

A First Course in Statistical Programming with R

This is the only introduction you'll need to start programming in R, the open-source language that is free to download, and lets you adapt the source code for your own requirements. Co-written by one of the R core development team, and by an established R author, this book comes with real R code that complies with the standards of the language.

Unlike other introductory books on the ground-breaking R system, this book emphasizes programming, including the principles that apply to most computing languages, and the techniques used to develop more complex projects. Learning the language is made easier by the frequent exercises within chapters which enable you to progress confidently through the book. More substantial exercises at the ends of chapters help to test your understanding.

Solutions, datasets, and any errata will be available from the book's website.

W. John Braun is an Associate Professor in the Department of Statistical and Actuarial Sciences at the University of Western Ontario. He is also a co-author, with John Maindonald, of Data Analysis and Graphics Using R.

Duncan J. Murdoch is an Associate Professor in the Department of Statistical and Actuarial Sciences at the University of Western Ontario. He was columnist and column editor of the statistical computing column of *Chance* during 1999–2000.

A First Course in Statistical Programming with R

W. John Braun and Duncan J. Murdoch

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9780521872652

© W. John Braun and Duncan J. Murdoch 2007

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2007 9th printing 2014

Printed in the United Kingdom by Clays, St Ives plc.

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-87265-2 Hardback ISBN 978-0-521-69424-7 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information regarding prices, travel timetables and other factual information given in this work are correct at the time of first printing but Cambridge University Press does not guarantee the accuracy of such information thereafter

Contents

	Pref	ace	page ix
ī	Get	ting started	1
	1.1	What is statistical programming?	1
	1.2	Outline of the book	2
	1.3		3
	1.4	Why use a command line?	3
	1.5	Font conventions	4
	1.6	Installation of R	4
2	Intro	oduction to the R language	5
	2.1	Starting and quitting R	5
	2.1	2.1.1 Recording your work	6
	2.2	Basic features of R	7
		2.2.1 Calculating with R	7
		2.2.2 Named storage	7
		2.2.3 Functions	9
		2.2.4 Exact or approximate?	9
		2.2.5 R is case-sensitive	12
		2.2.6 Listing the objects in the workspace	12
		2.2.7 Vectors	12
		2.2.8 Extracting elements from vectors	13
		2.2.9 Vector arithmetic	14
		2.2.10 Simple patterned vectors	15
		2.2.11 Missing values and other special values	16
		2.2.12 Character vectors	16
		2.2.13 Factors	17
		2.2.14 More on extracting elements from vectors	18
		2.2.15 Matrices and arrays	18
		2.2.16 Data frames	19
		2.2.17 Dates and times	21
	2.3	Built-in functions and online help	21
		2.3.1 Built-in examples	22
		2.3.2 Finding help when you don't know	
		the function name	23
		2.3.3 Built-in graphics functions	23
		2.3.4 Additional elementary built-in functions	25
	2.4	Logical vectors and relational operators	26
		2.4.1 Boolean algebra	26
		2.4.2 Logical operations in R	27
		2.4.3 Relational operators	28
	2.5	Data input and output	29
		2.5.1 Changing directories	29

۷i	CON	IENIS

		2.5.2 dump() and source()	29
		2.5.3 Redirecting R output	30
		2.5.4 Saving and retrieving image files	31
		2.5.5 Data frames and the read. table function	31
		2.5.6 Lists	31
	Cha	pter exercises	32
3	Prog	gramming statistical graphics	33
	3.1	High-level plots	33
		3.1.1 Bar charts and dot charts	34
		3.1.2 Pie charts	35
		3.1.3 Histograms	35
		3.1.4 Box plots	36
		3.1.5 Scatterplots	38
		3.1.6 QQ plots	39
	3.2	Choosing a high-level graphic	41
	3.3	Low-level graphics functions	42
	5.5	3.3.1 The plotting region and margins	42
		3.3.2 Adding to plots	42
	Cha	3.3.3 Setting graphical parameters	45
	Cnaj	pter exercises	46
4	Prog	gramming with R	47
	4.1	Flow control	47
		4.1.1 The for () loop	47
		4.1.2 The if () statement	50
		4.1.3 The while() loop	54
		4.1.4 Newton's method for root finding	55
		4.1.5 The repeat loop, and the break and next statements	57
	4.2	Managing complexity through functions	59
	7.2	4.2.1 What are functions?	59
		4.2.2 Scope of variables	62
	4.3	Miscellaneous programming tips	
	4.5		63
		4.3.1 Using fix()	63
	4.4	4.3.2 Documentation using #	64
	4.4	Some general programming guidelines	65
		4.4.1 Top-down design	67
	4.5	Debugging and maintenance	72
		4.5.1 Recognizing that a bug exists	72
		4.5.2 Make the bug reproducible	73
		4.5.3 Identify the cause of the bug	73
		4.5.4 Fixing errors and testing	75
		4.5.5 Look for similar errors elsewhere	75
		4.5.6 The browser() and debug() functions	75
	4.6	Efficient programming	77
		4.6.1 Learn your tools	77
		4.6.2 Use efficient algorithms	78
		4.6.3 Measure the time your program takes	79
		• 1 0	

CONTENTS

vii

		4.6.4 Be v	willing to use different tools	80
		4.6.5 Opt	imize with care	80
	Chaj	oter exercis	es	80
5	Simu	lation		82
	5.1	Monte Ca	ırlo simulation	82
	5.2	Generatio	on of pseudorandom numbers	83
	5.3		n of other random variables	88
		5.3.1 Bern	noulli random variables	88
		5.3.2 Bind	omial random variables	89
		5.3.3 Pois	sson random variables	93
		5.3.4 Exp	onential random numbers	97
		5.3.5 Nor	mal random variables	99
	5.4	Monte Ca	arlo integration	101
	5.5	Advanced	l simulation methods	104
		5.5.1 Reje	ection sampling	104
		5.5.2 Imp	ortance sampling	107
	Chaj	oter exercis	es	109
6	Con	putationa	l linear algebra	112
	6.1	Vectors a	nd matrices in R	113
	0.1		structing matrix objects	113
			essing matrix elements; row and column names	115
			rix properties	117
			ngular matrices	118
			rix arithmetic	118
	6.2		ultiplication and inversion	119
	0.2		rix inversion	120
			LU decomposition	121
			rix inversion in R	122
			ving linear systems	123
	6.3		ues and eigenvectors	124
	6.4	Advanced		125
	٠		singular value decomposition of a matrix	125
			Choleski decomposition of a positive definite matrix	126
			QR decomposition of a matrix	127
			condition number of a matrix	128
			er products	129
			necker products	129
			ply()	129
	Chaj	oter exercis	_	130
7	Nun	nerical opt	imization	132
	7.1	•	en section search method	132
	7.2	Newton-l		135
	7.3		er–Mead simplex method	138
	7.4	Built-in fi	=	142

Index		10
A ppendix	Review of random variables and distributions	15
Chapte	exercises	157
	5.7 Quadratic programming	151
7	5.6 Alternatives to 1p()	151
7	5.5 Integer programming	150
7	5.4 Unrestricted variables	149
7	5.3 Special situations	146
7	5.2 Maximization and other kinds of constraints	145
7	5.1 Solving linear programming problems in R	145
7.5 L	inear programming	142

Preface

This text began as notes for a course in statistical computing for second year actuarial and statistical students at the University of Western Ontario. Both authors are interested in statistical computing, both as support for our other research and for its own sake. However, we have found that our students were not learning the right sort of programming basics before they took our classes. At every level from undergraduate through Ph.D., we found that students were not able to produce simple, reliable programs; that they didn't understand enough about numerical computation to understand how rounding error could influence their results; and that they didn't know how to begin a difficult computational project.

We looked into service courses from other departments, but we found that they emphasized languages and concepts that our students would not use again. Our students need to be comfortable with simple programming so that they can put together a simulation of a stochastic model; they also need to know enough about numerical analysis so that they can do numerical computations reliably. We were unable to find this mix in an existing course, so we designed our own.

We chose to base this text on R. R is an open-source computing package which has seen a huge growth in popularity in the last few years. Being open source, it is easily obtainable by students and economical to install in our computing lab. One of us (Murdoch) is a member of the R core development team, and the other (Braun) is a co-author of a book on data analysis using R. These facts made it easy for us to choose R, but we are both strong believers in the idea that there are certain universals of programming, and in this text we try to emphasize those: it is not a manual about programming in R, it is a course in statistical programming that uses R.

Students starting this course are not assumed to have any programming experience or advanced statistical knowledge. They should be familiar with university-level calculus, and should have had exposure to a course in introductory probability, though that could be taken concurrently: the probabilistic concepts start in Chapter 5. (We include a concise appendix reviewing the probabilistic material.) We include some advanced topics in

x | PREFACE

simulation, linear algebra, and optimization that an instructor may choose to skip in a one-semester course offering.

We have a lot of people to thank for their help in writing this book. The students in Statistical Sciences 259b have provided motivation and feedback, Lutong Zhou drafted several figures, and Diana Gillooly of Cambridge University Press, Professor Brian Ripley of Oxford University, and some anonymous reviewers all provided helpful suggestions. And of course, this book could not exist without R, and R would be far less valuable without the contributions of the worldwide R community.