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Fundamental approximations

This chapter introduces the basic saddlepoint approximations without the burden of undue
formality or rigor. The chapter is designed to present the most fundamental and straightfor-
ward of the techniques with some associated factual information so the reader may begin
using the methods in practical settings with only minimal theoretical understanding. For this
reason, the presentation emphasizes implementation and computation and keeps theoretical
discussion to a minimum.

1.1 Univariate densities and mass functions

1.1.1 Preliminaries

The most fundamental saddlepoint approximation was introduced by Daniels (1954) and
is essentially a formula for approximating a density or mass function from its associated
moment generating function or cumulant generating function. We present this expression
after first defining the relevant quantities involved.

Suppose continuous random variable X has density f (x) defined for all real values of
x . The moment generating function (MGF) of density f (also for X ) is defined as the
expectation of exp(s X ) or

M (s) = E
(
es X

) =
∫ ∞

−∞
esx f (x) dx

over values of s for which the integral converges. With real values of s, the convergence
is always assured at s = 0. In addition, we shall presume that M converges over an open
neighborhood of zero designated as (a, b), and that, furthermore, (a, b) is the largest such
neighborhood of convergence. This presumption is often taken as a requirement for the
existence of the MGF in many textbooks. For simplicity we shall conform to this convention
but then relax the assumption when later applications demand so. The cumulant generating
function (CGF) of f (also X ) is defined as

K (s) = ln M (s) s ∈ (a, b). (1.1)

The terminology arises from the fact that the Taylor series coefficients of M and K (the
collection of higher order derivatives evaluated at s = 0) give rise to the moments and
cumulants respectively for random variable X. A simple exercise shows that the kth deriva-
tive of M evaluated at s = 0 is M (k) (0) = E(Xk), the kth moment of X. Also, using these
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2 Fundamental approximations

results, one can easily show that the first two cumulants of X are given as K ′ (0) = E (X )
and K ′′ (0) = var (X ) with higher order derivatives leading to the more complicated higher
order cumulants.

When random variable X is discrete and integer valued rather than continuous, the same
functions can be defined and we mention only those aspects that differ. Assume X has mass
function p (k) for integer k and define its MGF as

M (s) = E
(
es X

) =
∞∑

k=−∞
esk p (k) s ∈ (a, b),

with (a, b) as the maximal neighborhood of convergence about zero. The CGF is defined
as in (1.1) and the moments and cumulants are again the Taylor coefficients of M and K .

One of the more important facts discussed in probability courses and proven in mathe-
matical analysis is the one-to-one (1-1) correspondence that exists between the collection
of probability density and mass functions and their associated MGFs (assuming the latter
exist). Indeed, the distribution of a random variable is often determined using this corre-
spondence by recognizing the MGF as that associated with a particular density or mass
function. Unfortunately, settings where such recognition may be used are more often the
exception than the rule. Quite often MGFs or CGFs of random variables can be deter-
mined out of context but their density/mass functions cannot. In such instances, highly
accurate approximations to these density/mass functions can be computed by using the
saddlepoint methods introduced in Daniels (1954) which are based entirely on the known
CGFs.

An example of this is the determination of the distribution for a sum of independent
random variables. Suppose X1, . . . , Xn is a sequence of independent variables for which
Xi has MGF Mi and CGF Ki defined over (ai , bi ). The CGFs of X = ∑n

i=1 Xi and X̄ = X/n
are

K X (s) =
n∑

i=1

Ki (s) K X̄ (s) =
n∑

i=1

Ki (s/n) s ∈ (max
i

ai , min
i

bi ).

Recognition of the form for the CGFs specifies their associated distributions. For example,
if Xi has the Binomial (mi , θ ) mass function

pi (k) =
(

mi

k

)
θ k (1 − θ )mi −k k = 0, . . . , mi (1.2)

with CGF

Ki (s) = mi ln{θ (es − 1) + 1} s ∈ (−∞, ∞), (1.3)

then K X (s) = ∑n
i=1 Ki (s) is recognized from (1.3) as the CGF of a Binomial (m., θ )

mass function with m. = ∑
i mi . Uniqueness of the CGF specifies that X must have this

distribution and this is indicated by writing X ∼ Binomial (m., θ ).
If, however, these distributions are changed so they do not have common parameter θ

and Xi ∼ Binomial (mi , θi ), then the mass function of X becomes rather intractable. This
particular computation arises in reliability analysis when determining the reliability of a k-
out-of-m. heterogeneous system (Høyland and Rausand, 1994, p. 130). Suppose the system
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1.1 Univariate densities and mass functions 3

consists of m. independent components among which mi have common reliability θi for
i = 1, . . . , n. Variable X represents the number of components working in the system.
Suppose the system functions if and only if at least k of the components work. Then,
Pr (X ≥ k) is the reliability of the structure. This computation is illustrated as Example 4
in sections 1.1.6 and 1.2.4.

Four suggestions for computing the mass function of X in this reliability context are:

(1) enumerate the exact probabilities,
(2) use a normal density approximation,
(3) use brute force simulation, and
(4) use a saddlepoint approximation.

Option (1) may lead to intractable computations apart from small values of n, and (2) may
not result in the desired accuracy particularly when {mi } are small and {θi } are not near 1/2.

Option (3) can be time consuming, even with the speed of modern computers. This same
option in a continuous setting, when used to approximate a density, also requires kernel
density smoothing techniques which can be inaccurate even when applied with relatively
large simulations. The saddlepoint option (4) is examined below and is shown to result in
highly accurate approximation without the need for placing constraints or guidelines on
the values of {mi } and {θi }. Another advantage of saddlepoint methods is that the required
computational times are essentially negligible as compares with simulation.

1.1.2 Saddlepoint density functions

For continuous random variable X with CGF K and unknown density f, the saddlepoint
density approximation to f (x) is given as

f̂ (x) = 1√
2π K ′′(ŝ)

exp{K (ŝ) − ŝx}. (1.4)

Symbol ŝ = ŝ (x) denotes the unique solution to the equation

K ′(ŝ) = x (1.5)

over the range ŝ ∈ (a, b), and is an implicitly defined function of x . Expression (1.5) is
referred to as the saddlepoint equation and ŝ the saddlepoint associated with value x . The
approximation is meaningful for values of x that are interior points of {x : f (x) > 0} = X ,

the support of density f (or of random variable X ). We adopt the convention of referring
to f̂ as the saddlepoint density even though it isn’t really a density since generally

c =
∫
X

f̂ (x) dx 	= 1.

The normalized saddlepoint density

f̄ (x) = c−1 f̂ (x) x ∈ X

is however a proper density on X .
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4 Fundamental approximations

1.1.3 Examples

(1) Normal (0, 1) density

A standard normal distribution has CGF K (s) = s2/2 defined for s ∈ (−∞, ∞) . The
saddlepoint equation is explicit in this case as ŝ = x . Simple computation shows that

f̂ (x) = φ (x) = 1√
2π

exp
(− 1

2 x2
)

x ∈ X = (−∞, ∞) (1.6)

and the saddlepoint approximation exactly reproduces the standard normal density φ.

(2) Gamma (α, 1) density

The density in this instance is

f (x) = 1

� (α)
xα−1e−x x > 0

with CGF

K (s) = −α ln (1 − s) s ∈ (−∞, 1).

This leads to the explicit saddlepoint expression ŝ = 1 − α/x for x > 0. The term

K ′′(ŝ) = α (1 − ŝ)−2 = x2/α

so that for x > 0,

f̂ (x) = 1√
2πx2/α

exp {−α ln (1 − ŝ) − ŝx}

= 1√
2πx2/α

(x/α)α exp (−x + α)

= (√
2παα−1/2e−α

)−1
xα−1e−x . (1.7)

The shape of f̂ in (1.7) is the same as that of f but differs from f in the normalization
constant. Using Stirling’s approximation for � (α),

�̂ (α) =
√

2παα−1/2e−α 
 � (α) , (1.8)

then

f̂ (x) = � (α)

�̂ (α)
f (x) x > 0 (1.9)

and differs by a constant relative error determined as the relative error of �̂ (α) in approxi-
mating �(α). The normalized saddlepoint density is exact in this setting.

(3) Normal–Laplace convolution

Consider plotting the density of X = X1 + X2 where X1 ∼ Normal (0, 1) independently
of X2 ∼ Laplace (0, 1) with density

f (x) = 1
2 e−|x | x ∈ (−∞, ∞). (1.10)
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1.1 Univariate densities and mass functions 5
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Figure 1.1. ŝ(x) vs. x .

The CGF of X takes the particularly simple form

K (s) = 1
2 s2 − ln(1 − s2) s ∈ (−1, 1)

and the saddlepoint equation is

K ′(ŝ) = ŝ

(
1 + 2

1 − ŝ2

)
= x x ∈ (−∞, ∞). (1.11)

The saddlepoint solution is a root of a cubic polynomial that admits one real root and
a complex conjugate pair of roots. The unique real root ŝ = ŝ (x) has been determined
numerically and a plot of ŝ vs. x is shown in figure 1.1.

The plot shows that the saddlepoint ŝ (x) is an odd function in x, a fact confirmed by
noting that K ′ in (1.11) is also odd. Inspection of the plot, as well as consideration of the
saddlepoint equation in (1.11) reveal that ŝ (x) approaches asymptote ŝ = −1 as x → −∞
and asymptote ŝ = 1 when x → ∞; thus for x ∈ (−∞, ∞) , the saddlepoint equation can
always be solved to find a saddlepoint within (−1, 1) . Figure 1.2 shows a comparative plot
of the “true” density f (solid line) with the unnormalized saddlepoint density f̂ (dotted
line), and the normalized saddlepoint density f̄ (dashed line).

The “true” density was computed using numerical convolution of the densities involved.
A complicated exact expression in terms of special functions has been given in Johnson and
Kotz (1970, chap. 1, Eq. (28)), however, numerical computation suggests that it is incorrect
since it differs substantially from the numerical convolution. The normalization constant
for f̄ is most easily computed numerically by making the substitution dx = K ′′(ŝ)dŝ so
that ∫ ∞

−∞
f̂ (x)dx =

∫ 1

−1

√
K ′′(ŝ)/(2π ) exp{K (ŝ) − ŝK ′(ŝ)}dŝ


 0.8903.

The graphical difference between the normalized saddlepoint approximation f̄ and f is
slight since f̂ mostly captures the proper shape of f but not the correct scaling.
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6 Fundamental approximations
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Figure 1.2. f (x) (solid), f̄ (x) (dashed), and f̂ (x) (dotted) vs. x for the normal-Laplace
convolution.

(4) Gumbel (0, 1) density

This distribution is also called the extreme value distribution and has CDF

F (x) = exp(−e−x ) x ∈ (−∞, ∞),

with CGF

K (s) = ln � (1 − s) s ∈ (−∞, 1).

Saddlepoint computation involves first and second derivatives of the ln � function which
are the di- and tri-gamma functions respectively. Both functions are in the Maple V library
and were computed using these routines. Figure 1.3 compares f, f̂ , and f̄ . The degree
of accuracy of f̂ is striking and f̂ integrates to about 0.9793. The plot of f̄ is virtually
indistinguishable from f.

1.1.4 Remarks

A cursory understanding of the approximation in (1.4) and (1.5) requires clarification of a
number of presupposed facts that can be supported with the examples above:

(1) Function K is always a strictly convex function when evaluated over (a, b) so K ′′(ŝ) > 0
and the square root is well-defined.

(2) Consider the solvability of (1.5) for the saddlepoint. An appropriate choice of x guar-
antees that there is a unique solution to (1.5) as now explained. If X is the support of
random variable X, defined as X = {x : f (x) > 0} for continuous density f, let IX be the
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1.1 Univariate densities and mass functions 7
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Figure 1.3. f (x) (solid), f̄ (x) (dashed), and f̂ (x) (dotted) vs. x for the Gumbel density.
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Figure 1.4. The CGF for an Exponential (1).

interior of the span of this support. For example, if X has a uniform density over support
X = [0, 1]

⋃
(2, 3), then the span of the support is [0, 3) and IX = (0, 3). The mapping

K ′ : (a, b) → IX is 1-1 and onto (a bijection), and K ′ is strictly increasing, as mentioned
in remark (1), so that a unique solution exists. Other solutions to (1.5) may exist outside
of (a, b), but such roots are not allowed since solutions to the saddlepoint equation are
restricted to the neighborhood (a, b) about zero. If a value of x /∈ IX is chosen, then a
solution to (1.5) cannot exist in (a, b) but may exist outside of this range.

Figure 1.4 plots K (s) vs. s for an Exponential (1) or Gamma (1,1) density. The slopes
of the graph range from 0 as s ↓ −∞ to ∞ as s ↑ 1 and span the range of support (0, ∞).
The corresponding s-values on the horizontal axis are the associated saddlepoints spanning
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8 Fundamental approximations

(−∞, 1), the convergence neighborhood of K . The choice of x < 0 outside of X , the
density’s support, does not yield a solution to the saddlepoint equation since K ′ cannot
be negative over (−∞, 1); nevertheless, a meaningless solution can be found for some
s ∈ (1, ∞).

A sum of two independent exponential random variables provides an example that
illustrates the possibility of erroneous solutions to the saddlepoint equation. Suppose
X = X1 + X2 where X1 and X2 are independent exponentials with means of 1 and 2.

The MGF of X is

MX (s) = (1 − s)−1 (1 − s/2)−1

and the convergence strip is (−∞, 1). Solution to the saddlepoint equation

K ′
X (ŝ) = 1

1 − ŝ
+ 1

2 − ŝ
= x ∈ (0, ∞) (1.12)

when restricted to ŝ ∈ (−∞, 1) is unique and is the smaller root of the quadratic equa-
tion determined in (1.12). The larger root is within the range (1.5, 2) and is an erro-
neous solution. The mapping K ′

X : (−∞, 1) → (0, ∞) is a bijection, however, the map-
ping K ′

X : (1.5, 2) → (0, ∞) is also a bijection, yielding erroneous saddlepoints when root
finding is not restricted.

(3) Since K ′ (0) = E (X ) , the saddlepoint associated with x = E (X ) must be ŝ = 0 by
uniqueness. Using the monotonicity of K ′ then ŝ (x) must have the same sign as x − E (X )
or

sgn {ŝ (x)} = sgn{x − E(X )}.

Furthermore, saddlepoints for x-values in the right (left) tail of f are necessarily close but
smaller than b (greater than a).

Note that for the Exponential (1) example with x > 0, ŝ = 1 − 1/x and sgn(ŝ) =
sgn(x − 1).

1.1.5 Saddlepoint mass functions

For discrete integer-valued random variable X, the saddlepoint approximation for its mass
function p(k), based on CGF K , is the same expression as (1.4) and (1.5) when evaluated
over the integer values of k. It is written as

p̂ (k) = 1√
2π K ′′(ŝ)

exp {K (ŝ) − ŝk} (1.13)

where

K ′(ŝ) = k (1.14)

and k ∈ IX , the interior of the span of the support of X. Saddlepoint expression (1.13)
is computable for any value in IX whether real or integer-valued, but the plot of p̂(k) is
meaningful as an approximation to p(k) only for integer-valued arguments.
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1.1 Univariate densities and mass functions 9

1.1.6 Examples

(1) Poisson (λ)

For fixed and known λ, the CGF is

K (s) = λ(es − 1) s ∈ (−∞, ∞).

The saddlepoint equation

K ′(ŝ) = λeŝ = k k = 1, 2, . . .

has an explicit saddlepoint solution ŝ = ln (k/λ) . The saddlepoint equation cannot be solved
at k = 0 but note that 0 /∈ IX = (0, ∞) and lies on the boundary of support. The saddlepoint
density is

p̂ (k) = 1√
2πk

exp {k − λ − k ln (k/λ)}

= (√
2πkkke−k

)−1
λke−λ

= λke−λ/ k̂! (1.15)

where

k̂! =
√

2πkk+1/2e−k 
 k! (1.16)

is Stirling’s approximation to the factorial function. This factorial approximation is not
exactly the equivalent of the gamma function approximation �̂ (k + 1) in (1.8) but they are
related by

k̂! = k�̂ (k) 	= �̂(k + 1).

(This distinction has been a common source of confusion in the saddlepoint area.) Thus, p̂
is related to the true mass function p by

p̂ (k) = k!

k̂!
p (k) k = 1, 2, . . . (1.17)

Normalization requires p (0) to be known so that

p̄ (k) =
{

p (0) k = 0

{1 − p (0)} p̂ (k) /
∑

j≥1 p̂( j) k ≥ 1

is a normalized saddlepoint approximation. In practical applications, the calculation of
boundary probabilities like p (0) is usually possible. The saddlepoint approximations are
not exact in this setting and the relative error is that of Stirling’s approximation to k!.
Table 1.1 compares Poisson (1) probabilities for k = 1, 3, . . . , 19 with the values given by
p̂ and p̄. The values of the normalized density p̄ are the same as the exact values to the four
significant digit accuracy displayed and are listed along with the exact values. Unnormalized
values of p̂ are given in the third column with their associated relative percentage errors in
the fourth column. The diminishing relative error with larger k might have been anticipated
since it reflects the relative error of Stirling’s approximation k̂! in (1.16) which is known to
decrease with k.
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10 Fundamental approximations

Table 1.1. Poisson (1) probabilities p with saddlepoint
approximations p̂ (unnormalized) and p̄ (normalized)

k p (k) 
 p̄ (k) p̂ (k) % relative error

1 .3679 .3989 8.426
3 .06131 .06303 2.805
5 .023066 .023117 1.663
7 .047299 .047387 1.206
9 .051014 .051023 0.8875

11 .089216 .089286 0.7595
13 .0105908 .0105946 0.6432
15 .0122813 .0122829 0.5688
17 .0141034 .0141039 0.4836
19 .0173024 .0173037 0.4299

(2) Binomial (n, θ )

The binomial mass function in (1.2) with CGF (1.3) admits an explicit saddlepoint
solution

ŝ = ln

{
k (1 − θ )

(n − k) θ

}
k = 1, . . . , n − 1. (1.18)

The term K ′′(ŝ) = k (n − k) /n and the saddlepoint mass function works out to be

p̂ (k) =
(̂

n

k

)
θ k (1 − θ )n−k k = 1, . . . , n − 1 (1.19)

where the notation (̂
n

k

)
= n̂!

k̂! ̂(n − k)!



(
n

k

)
is used based on Stirling’s approximation in (1.16). The relationship of p̂ (k) to p (k) in
(1.19) exhibits a structure like that of the Poisson example in (1.17), and which arises
consistently in applications of saddlepoint approximations: In the range of examples where
combinatorics, factorials or gamma functions are normalization constants, the saddlepoint
approximations f̂ and p̂ are often equal to f or p times a factor consisting of ratios of
various Stirling approximations. In this example, the relationship is

p̂ (k) =
(̂

n

k

)(
n

k

)−1

p (k) k = 1, . . . , n − 1.

(3) Negative Binomial (n, θ )

Suppose X is the number of failures occurring in a sequence of Bernoulli trials before the
nth success where θ is the probability of a single success. Exercise 9 specifies the details

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-87250-8 - Saddlepoint Approximations with Applications
Ronald W. Butler
Excerpt
More information

http://www.cambridge.org/0521872502
http://www.cambridge.org
http://www.cambridge.org

