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Basic concepts and results

Percolation theory was founded by Broadbent and Hammersley [1957],
in order to model the flow of fluid in a porous medium with randomly
blocked channels. Interpreted narrowly, it is the study of the component
structure of random subgraphs of graphs. Usually, the underlying graph
is a lattice or a lattice-like graph, which may or may not be oriented,
and to obtain our random subgraph we select vertices or edges indepen-
dently with the same probability p. In the quintessential examples, the
underlying graph is Z

d.
The aim of this chapter is to introduce the basic concepts of percola-

tion theory, and some easy fundamental results concerning them.
We shall use the definitions and notation of graph theory in a stan-

dard way, as in Bollobás [1998], for example. In particular, if Λ is a
graph, then V (Λ) and E(Λ) denote the sets of vertices and edges of Λ,
respectively. We write x ∈ Λ for x ∈ V (Λ). We also use standard nota-
tion for the limiting behaviour of functions: for f = f(n) and g = g(n),
we write f = o(g) if f/g → 0 as n → ∞, f = O(g) if f/g is bounded,
f = Ω(g) for g = O(f), and f = Θ(g) if f = O(g) and g = O(f).

The standard terminology of percolation theory differs from that of
graph theory: vertices and edges are called sites and bonds, and com-
ponents are called clusters. When our random subgraph is obtained by
selecting vertices, we speak of site percolation; when we select edges,
bond percolation. In either case, the sites or bonds selected are called
open and those not selected are called closed; the state of a site or bond
is open if it is selected, and closed otherwise. (In some of the early
papers, the term ‘atom’ is used instead of ‘site’, and ‘dammed’ and ‘un-
dammed’ for ‘closed’ and ‘open’.) In site percolation, the open subgraph
is the subgraph induced by the open sites; in bond percolation, the open
subgraph is formed by the open edges and all vertices; see Figure 1.
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2 Basic concepts and results

Figure 1. Parts of the open subgraphs in site percolation (left) and bond
percolation (right) on the square lattice Z

2. On the left, the filled circles are
the open sites; the open subgraph is the subgraph of Z

2 induced by these. For
bond percolation, the open subgraph is the spanning subgraph containing all
the open bonds.

To streamline the discussion, we shall concentrate on unoriented per-
colation, i.e., on (bond and site) percolation on an unoriented graph Λ.
We assume that Λ is connected, infinite, and locally finite (i.e., every
vertex has finite degree). In general, Λ is a multi-graph, so multiple edges
between the same pair of vertices are allowed, but not loops. Most of
the interesting examples will be simple graphs.

Often, we shall choose bonds or sites to be open with the same proba-
bility p, independently of each other. This gives us a probability measure
on the set of subgraphs of Λ; in bond percolation we write P

b
Λ,p for this

measure, and in site percolation P
s
Λ,p. More often than not, we shall

suppress the dependence of these measures on some or all parameters,
and write simply P or Pp. Similarly, Λb

p is the open subgraph in bond
percolation, and Λs

p in site percolation.
Formally, given a graph Λ with edge-set E, a (bond) configuration is

a function ω : E → {0, 1}, e �→ ωe; we write Ω = {0, 1}E for the set of
all (bond) configurations. A bond e is open in the configuration ω if and
only if ωe = 1, so configurations correspond to open subgraphs. Let Σ
be the σ-field on Ω generated by the cylindrical sets

C(F, σ) = {ω ∈ Ω : ωf = σf for f ∈ F},

where F is a finite subset of E and σ ∈ {0, 1}F . Let p = (pe)e∈E , with
0 ≤ pe ≤ 1 for every bond e. We denote by P

b
Λ,p the probability measure

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-87232-4 - Percolation
Béla Bollobás and Oliver Riordan
Excerpt
More information

http://www.cambridge.org/9780521872324
http://www.cambridge.org
http://www.cambridge.org


1. Basic concepts and results 3

on (Ω,Σ) induced by

P
b
Λ,p

(
C(F, σ)

)
=

∏
f∈F
σf =1

pf

∏
f∈F
σf =0

(1 − pf ). (1)

When pe = p for every edge e, as before, we write P
b
Λ,p for P

b
Λ,p.

In the measure P
b
Λ,p, the states of the bonds are independent, with

the probability that e is open equal to pe; thus, for two disjoint sets F0

and F1 of bonds,

P
b
Λ,p

(
the bonds in F1 are open and those in F0 are closed

)
=

∏
f∈F1

pf

∏
f∈F0

(1 − pf ).

We call P
b
Λ,p an independent bond percolation measure on Λ. The special

case where pe = p for every bond e is exactly the measure P
b
Λ,p defined

informally above. The formal definitions for independent site percolation
are similar.

Let us remark that site percolation is more general, in the sense that
bond percolation on a graph Λ is equivalent to site percolation on L(Λ),
the line graph of Λ. This is the graph whose vertices are the edges of Λ;
two vertices of L(Λ) are adjacent if the corresponding edges of Λ share
a vertex; see Figure 2.

Although in this chapter we shall make some remarks about general
infinite graphs, the main applications are always to ‘lattice-like’ graphs.
These graphs have a finite number of ‘types’ of vertices and of edges.
Occasionally, we may select vertices or edges of different types with
different probabilities.

For a fixed underlying graph Λ, there is a natural coupling of the
measures P

b
Λ,p, 0 ≤ p ≤ 1: take independent random variables Xe for

each bond e of Λ, with Xe uniformly distributed on [0, 1]. We may
realize Λb

p as the spanning subgraph of Λ containing all bonds e with
Xe ≤ p. In this coupling, if p1 < p2, then Λb

p1
is a subgraph of Λb

p2
. A

similar coupling is possible for site percolation.
An open path is a path (i.e., a self-avoiding walk) in the open subgraph.

For sites x and y, we write ‘x→ y’ or {x → y} for the event that there
is an open path from x to y, and P(x → y) for the probability of this
event in the measure under consideration. We also write ‘x → ∞’ for
the event that there is an infinite open path starting at x.

An open cluster is a component of the open subgraph. As the graphs

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-87232-4 - Percolation
Béla Bollobás and Oliver Riordan
Excerpt
More information

http://www.cambridge.org/9780521872324
http://www.cambridge.org
http://www.cambridge.org


4 Basic concepts and results

Figure 2. Part of the square lattice Z
2 (solid circles and lines) and its line

graph L(Z2) (hollow circles and dotted lines). Note that L(Z2) is isomorphic
to the non-planar graph obtained from Z

2 by adding both diagonals to every
other face.

we consider are locally finite, an open cluster is infinite if and only if,
for every site x in the cluster, the event {x→ ∞} holds. Given a site x,
we write Cx for the open cluster containing x, if there is one; otherwise,
we take Cx to be empty. Thus Cx = {y ∈ Λ : x → y} is the set of sites
y for which there is an open x–y path. Clearly, in bond percolation, Cx

always contains x, and in site percolation, Cx = ∅ if and only if x is
closed.

Let θx(p) be the probability that Cx is infinite, so θx(p) = Pp(x→ ∞).
Needless to say, θx(p) depends on the underlying graph Λ, and whether
we take bond or site percolation. More formally, for bond percolation,
for example,

θx(p) = θx(Λb
p) = θb

x(Λ; p) = P
b
Λ,p(|Cx| = ∞),

where |Cx| = |V (Cx)| is the number of sites in Cx. We shall use
whichever form of the notation is clearest in any given context. In future,
we shall introduce such self-explanatory variants of our notation without
further comment; we believe that this will not lead to confusion. Two
sites x and y of a graph Λ are equivalent if there is an automorphism
of Λ mapping x to y. When all sites are equivalent (i.e., the symmetry
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1. Basic concepts and results 5

group of the graph Λ acts transitively on the vertices), we write θ(p) for
θx(p) for any site x. The quantity θ(p), or θx(p), is sometimes known as
the percolation probability.

Clearly, if x and y are sites at distance d, then θx(p) ≥ pdθy(p), so
either θx(p) = 0 for every site x, or θx(p) > 0 for every x. Trivially,
from the coupling described above, θx(p) is an increasing function of p.
Thus there is a critical probability pH, 0 ≤ pH ≤ 1, such that if p < pH,
then θx(p) = 0 for every site x, and if p > pH, then θx(p) > 0 for
every x. The notation pH is in honour of Hammersley. When the model
under consideration is not clear from the context, we write ps

H(Λ) for
site percolation on Λ and pb

H(Λ) for bond percolation.
The component structure of the open subgraph undergoes a dramatic

change as p increases past pH: if p < pH then the probability of the
event E that there is an infinite open cluster is 0, while for p > pH this
probability is 1. To see this, note that the event E is independent of the
states of any finite set of bonds or sites, so Kolmogorov’s 0-1 law (see
Theorem 1 in Chapter 2) implies that Pp(E) is either 0 or 1. If p < pH,
so that θx(p) = 0 for every x, then

Pp(E) ≤
∑

x

θx(p) = 0,

and if p > pH, then Pp(E) ≥ θx(p) > 0 for some site x (and so for
all sites), implying that Pp(E) = 1. One says that percolation occurs
in a certain model if θx(p) > 0, so Pp(E) = 1. With a slight abuse of
terminology, we use the same word both for this particular event and
for the measures studied; this is not ideal, but, as in so many subjects,
the historical terminology is now entrenched.

To start with, the theory of percolation was concerned mostly with the
study of critical probabilities, i.e., with the question of when percolation
occurs. Now, however, it encompasses the study of much more detailed
properties of the random graphs arising from percolation measures. In
fact, great efforts are made to describe the structure of these random
graphs at or near the critical probability, even when we cannot pin down
the critical probability itself. In Chapter 7, we shall get a glimpse of the
huge amount of work done in this area, although in a setting in which
the critical probability is known.

The theory of percolation deals with infinite graphs, and many of
the basic events studied (such as the occurrence of percolation) in-
volve the states of infinitely many bonds. Nevertheless, it always suf-
fices to consider events in finite probability spaces, since, for example,
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6 Basic concepts and results

θx(p) = limn→∞ Pp(|Cx| ≥ n). In this book, almost all the time, even
the definition of the infinite product measure will be irrelevant.

For p < pH, the open cluster Cx is finite with probability 1, but
its expected size need not be finite. This leads us to another critical
probability, pT, named in honour of Temperley. Again, we write ps

T(Λ)
or pb

T(Λ) for site or bond percolation on Λ. For a site x, set

χx(p) = Ep(|Cx|),

where Ep is the expectation associated to Pp. If all sites are equivalent,
we write simply χ(p). Trivially, χx(p) is increasing with p, and, as before,
χx(p) is finite for some site x if and only if it is finite for all sites. Hence
there is a critical probability

pT = sup{p : χx(p) <∞} = inf{p : χx(p) = ∞},

which does not depend on x. By definition, pT ≤ pH. One of our aims
will be to prove that pT = pH for many of the most interesting ground
graphs, including the lattices Zd, d ≥ 2.

There are very few cases in which pH and pT are easy to calculate.
The prime example is the d-regular infinite tree, otherwise known as the
Bethe lattice (see Figure 3). For the purposes of calculation, it is more

e

Figure 3. The 3-regular tree, for which pb
T = pb

H = ps
T = ps

H = 1/2. Deleting
an edge (e, for example), this tree falls into two components, each of which is
a 2-branching tree.

convenient to consider the k-branching tree Tk. This is the rooted tree in
which each vertex has k children, so all sites but one have degree k+ 1.
Writing v0 for the root of Tk, let Tk,n be the section of this tree up to
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1. Basic concepts and results 7

v0

Figure 4. The tree T2,4 with root v0.

height (or, following the common mathematical convention of planting
trees with the root at the top, depth) n, as in Figure 4. Taking the
bonds to be open independently with probability p, let πn = πk,n(p) be
the probability that Tk,n contains an open path of length n from the
root to a leaf. Since such a path exists if and only if, for some child v1
of v0, the bond v0v1 is open and there is an open path of length n − 1
from v1 to a leaf, we have

πn = 1 − (1 − pπn−1)k = fk,p(πn−1). (2)

On the interval [0, 1], the function fk,p(x) is increasing and concave, with
fk,p(0) = 0 and fk,p(1) < 1, so fk,p(x0) = x0 for some 0 < x0 < 1 if and
only if f ′k,p(0) = kp > 1; furthermore, the fixed point x0 is unique when
it exists (see Figure 5). Thus, if p > 1/k, then, appealing to (2) we see

Figure 5. For k = 2 and p = 2/3, the increasing concave function f(x) =
fk,p(x) = 4

3
x − 4

9
x2 satisfies f ′ = 4

3
− 8

9
x, f(0) = 0, f(3/4) = 3/4 and

f(1) = 8/9.
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8 Basic concepts and results

that πn−1 ≥ x0 implies πn ≥ x0. Since π0 = 1, it follows that πn ≥ x0

for every n, so θb
v0

(Tk; p) ≥ x0 > 0, implying that pb
H(Tk) ≤ 1/k. Also, if

p ≤ 1/k, then πn converges to 0, the unique fixed point of fk,p(x), and
so θb

v0
(Tk; p) = 0. Hence, the critical probability pb

H(Tk) is equal to 1/k.
Turning to pT, note that the probability that a site y at graph distance

� from the root v0 belongs to Cv0 is exactly p�. Thus,

χb
v0

(Tk; p) = E(|Cv0 |) =
∑
y∈Tk

P(y ∈ Cv0) =
∞∑

�=0

k�p�,

which is finite for p < 1/k and infinite for p ≥ 1/k. Thus the critical
probability pb

T(Tk) is also equal to 1/k.
For any infinite tree, after conditioning on the root x being open, the

open clusters containing x in site and bond percolation have exactly the
same distribution. Indeed, each child of a site in the open cluster lies
in the open cluster with probability p. Thus, for the k-branching tree
Tk, we have ps

H = pb
H = ps

T = pb
T = 1/k. It is easy to show similarly,

or indeed to deduce, that the four critical probabilities associated to the
(k + 1)-regular tree are also equal to 1/k.

The argument above amounts to a comparison between percolation on
Tk and a certain branching process; we shall give a slightly less trivial
example of such a comparison shortly. If Λ is any graph with maximum
degree ∆, then a ‘one-way’ comparison with a branching process shows
that all critical probabilities associated to Λ are at least 1/(∆ − 1). To
see this more easily, note that for every y ∈ Cx there is at least one open
path in Λ from x to y. Thus χx(p) = Ep(|Cx|) is at most the expected
number of open (finite) paths in Λ starting at x. There are at most
∆(∆ − 1)�−1 paths in Λ of length � starting at x, so

χb
x(p) ≤ 1 +

∑
�≥1

∆(∆ − 1)�−1p�

and

χs
x(p) ≤ p+

∑
�≥1

∆(∆ − 1)�−1p�+1,

for bond and site percolation respectively. Both sums converge for any
p < 1/(∆ − 1), so pb

T(Λ), ps
T(Λ) ≥ 1/(∆ − 1). As pH ≥ pT, the corre-

sponding inequalities for pH follow. This shows that among all graphs
with maximum degree ∆, the ∆-regular tree has the lowest critical prob-
abilities.

There are various trivial changes we can make to a graph whose effect
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1. Basic concepts and results 9

on the critical probability is easy to calculate. For example, if Λ is
any graph and Λ(�) is obtained from Λ by subdividing each edge � − 1
times, then pb

c (Λ(�)) = pb
c (Λ)1/�, where pb

c is pb
H or pb

T. Also, if Λ[k]

is obtained from Λ by replacing each edge by k parallel edges, then
1−pb

c (Λ[k]) = (1−pb
c (Λ))1/k, where pb

c is pb
H or pb

T. Of course, ps
c(Λ[k]) =

ps
c(Λ). Combining these operations, we may replace each bond of a graph

by k independent paths of length � to obtain a new graph. For bond
percolation, the critical probabilities pold and pnew satisfy

1 − (1 − p�
new)k = pold.

In this way, by a trivial operation on the graph, a critical probability in
the interval (0, 1) can be moved very close to any point of (0, 1).

If we know the critical probability for a graph Λ, then we know in-
stantly the critical probabilities for a family of graphs Λ′ obtained by
sequences of trivial operations from Λ, as in Figure 6.

Figure 6. Transforming one bond percolation model into another, and then
into a site percolation model. If the first (the hexagonal lattice) has critical
probability p, then the second has critical probability r satisfying r3(2−r) = p,
which is also the critical probability for site percolation on the third graph.

It is easy to show that any 0 < π < 1 is the critical probability for
some graph, indeed, for some tree. Let T be a finite rooted tree with
height (depth) h, with � leaves. Let T 1 = T , and let Tn be the rooted
tree of height hn formed from Tn−1 by identifying each leaf with the
root of a copy of T . For example, if T is a star with k edges, then Tn

is the tree Tk,n defined above. Let T∞ be the ‘limit’ of the trees Tn,
defined in the obvious way.

Taking the bonds of T to be open independently with probability p,
the number of leaves of T joined to the root by open paths has a certain
distribution X with expectation ph�. Now suppose that the bonds of T∞

are open independently with probability p, and let Xn be the number
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10 Basic concepts and results

of sites of T∞ at distance hn from the root joined to the root by open
paths. Then the sequence (X0, X1, X2, . . .) is a branching process: we
have X0 = 1, and each Xn is the sum of Xn−1 independent copies of the
distribution X. As X is bounded, excluding the trivial case p = � = 1,
it is easy to show (arguing as above for Tk) that percolation occurs if
and only if E(X) > 1, i.e., if and only if ph� > 1; this is a special case
of the fundamental result of the theory of branching processes. In fact,
one obtains

ps
T(T∞) = ps

H(T∞) = pb
T(T∞) = pb

H(T∞) = �−1/h. (3)

Suppose now that k ≥ 1 and 1/(k + 1) < π < 1/k. Define 0 < α < 1
by (k+1)αk1−α = 1/π. Let a = (ai)∞i=1 be the 0-1 sequence with density
α constructed as follows: whenever 2j−1 divides i but 2j does not, set
ai = 1 if and only if the jth bit in the binary expansion of α is 1. Let
Ta be the rooted tree in which each site at distance i from the root has
k+ai+1 children. It is easy to check that, for each n, we can find trees T ′

and T ′′ of height � = 2n such that (T ′)∞ ⊂ Ta ⊂ (T ′′)∞, where T ′′ has
(k + 1)/k times as many leaves as T ′. Using (3), one can easily deduce
that pc(Ta) = π, where pc denotes any of the four critical probabilities
we have defined.

Alternatively, let T be the random rooted tree in which each site has
k + 1 children with probability r and k children with probability 1 − r,
with the choices made independently for each site. It is easy to show
that with probability 1 this random tree has pc(T ) = 1/(k + r).

In general, it is easy to calculate the various critical probabilities for a
graph that is ‘sufficiently tree-like’. For example, for � ≥ k ≥ 3, let Ck,�

be the cactus shown in Figure 7. This graph is formed by replacing each
vertex of the k-regular tree Tk by a complete graph on � vertices, and
joining each pair of complete graphs corresponding to an edge of Tk by
identifying a vertex of one with a vertex of the other, using no vertex in
more than one identification. We call the vertices resulting from these
identifications attachment vertices. Although Ck,� contains many cycles,
it still has the global structure of a tree, and percolation on Ck,� may
again be compared with a branching process.

Indeed, let K� be a complete graph with k distinguished (attachment)
vertices v1, . . . , vk. Taking the edges of K� to be open independently
with probability p, let Xp be the random number of vertices among
v2, . . . , vk that may be reached from v1 by open paths. Let us explore
the open cluster of a given initial site x of Ck,� by working outwards
from x. Except at the first step, from each attachment vertex that we
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