Index

acceptance
 and rejection 5, 70, 75–6, 77, 79, 107
 prudential vs. evidential 6–7, 109
 see also action, belief
acheulean tools 332
acting troupe 231, 307
action 3–7, 65, 107
Adam, Y-chromosome 272
Adams, E. 104–7
adaptation
 adaptationism 297, 312, 361
 adaptive characters 261
 adaptive peaks 157, 212–15, 293–352, 364
agnosticism 186
 see also atheism, theistic evolutionism
Akaike, H. see Akaike Information Criterion
and frequentism 102–4
and instrumentalism 96–8
and phylogenetic inference 341
 see also model selection
Alexander, R. M. 205
Alfaro, M. 342
alignment 290
Allman, J. 227–9, 234
ancestor
 inferring character state of 207–12, 253–8, 359–60
 meaning of 268
 versus relative 204
Anderson, D. 70, 72, 91, 95, 98
Anscombe, F. J. 76
Antonovics, J. 192
appendix 305
Aquinas, St. T. see design argument
Arbuthnot, J. 117–18, 227
arch and keystone 162
Armitage, P. 77
assumptions 252–3, 342, 344
 see also auxiliary assumptions
atheism 112
 see also agnosticism, theistic evolutionism
auxiliary assumptions 151, 153, 333, 356, 362
 and design argument 142
 and testing for selection 201
 need for independent justification 143, 151
 see also De Niro fallacy
Backe, A. 78
backwards inequality 216, 246, 279, 301, 360
 see also Markov model
Bacon, F. 109, 113
Bapteste, E. 268
Baum, D. 203, 255
Bayes, T. 8
Bayes’ Theorem 8–9, 11–13, 35, 41, 258
Bayesian Information Criterion 92
 see also Model Selection
Bayesianism 2–3, 8, 11–13, 15–17, 18, 20–4, 32–5, 37, 42, 46, 48–9, 53, 64, 65, 66, 70–1, 78, 81, 90, 337, 341, 351, 355
 and common ancestry 275
 and logic 30–2
 and statistics 30–2
 and stopping rules 72–8
 and testability 46
 objections to 24–30
 see also experimental design and bayesianism
Beatty, J. 281
beetle 205
Behe, M. 128, 154, 168, 182
 see also design argument, irreducible complexity
belief 3–7, 5, 8, 32, 39–40, 56
 see acceptance
Bentley, R. 116
Bertrand’s Paradox 28
 see indifference, principle of
Big Ben 134, 135
biogeography 324, 330
biological species concept 268
birthday fallacy 115, 177, 331
Borel, E. 116
breakfast 43–4, 139
breast cancer 169
Breeder’s equation 195, 196
Brooke, J. 109
Brouwer, L. E. J. 100
Brown, F. B. 186, 187
Brownian motion 194, 252
Buckley, T. 341
Burkhardt, F. 186
Burnham, K. 70, 72, 95, 98
But, A. 222, 251
Butler, M. 194
Cairn-Smith, A. G. 162
cake slicing 27, 55
Cantor, C. 284, 337
Cantor, G. 100
Cape Verde 329
Carroll, S. 320
Carnap, R. 76
Characters

coding 310
dichotomous versus continuous 287, 325
genetic and phenotypic 290
individuation of 136
weighting of 295
chevalier adaptation, drift
Cheverud, J. M. 252
Christianity 187
chromosome number 285
Cicero 117
Clifford, W. K. 7, 188
Cockrell, B. 205
coincidences 104–7
combination lock 123
common ancestry 124
and common causes 292
and fossil evidence 318–24
and LUCA (last universal common ancestor) 270
and parsimony 314–18
and similarity 266, 291, 311
and tests of selection 239
as control 252
biogeographical evidence 324
evidence from matching 277, 293
biogeography 324, 330
birthday fallacy 115, 177, 331
breakfast 43–4, 139
breast cancer 169
Breeder’s equation 195, 196
Brooke, J. 109
Brouwer, L. E. J. 100
Brown, F. B. 186, 187
Brownian motion 194, 252
Buckley, T. 341
Burkhardt, F. 186
Burnham, K. 70, 72, 95, 98
But, A. 222, 251
Butler, M. 194
Cairn-Smith, A. G. 162
cake slicing 27, 55
Cantor, C. 284, 337
Cantor, G. 100
Cape Verde 329
Carroll, S. 320
Carnap, R. 76
Characters

coding 310
dichotomous versus continuous 287, 325
genetic and phenotypic 290
individuation of 136
weighting of 295
chevalier adaptation, drift
Cheverud, J. M. 252
Christianity 187
chromosome number 285
Cicero 117
Clifford, W. K. 7, 188
Cockrell, B. 205
coincidences 104–7
combination lock 123
common ancestry 124
and common causes 292
and fossil evidence 318–24
and LUCA (last universal common ancestor) 270
and parsimony 314–18
and similarity 266, 291, 311
and tests of selection 239
as control 252
biogeographical evidence 324
evidence from matching 277, 293
meaning of 268
versus separate ancestry 274
common cause, principle of 232, 278, 307
competitive exclusion 282
composite versus simple hypotheses 31, 47, 66,
68, 70–1
conditional probability, definition of 9
confirmation 15–17, 32, 34–5
degree of 16–17, 33
see also bayesianism
consistency, statistical 24, 90–1, 347–51
contexts of discovery and justification 185
contingency of evolutionary process 363
controlled comparison in testing selection
against inertia 248
Conway Morris, S. 66, 363
Cook, R. 205
correlation
as evidence for common ancestry 306
spatial and temporal 233
see also backwards inequality
cosmological argument 186
Cottingham, J. 147
Courant, R. 100
Coyne, J. 281
Cracraft, J. 358
Crandall, K. 341
creationism 51, 274, 318, 329
and politics 184–5
and wedge strategy 184
as empty 110, 361
testability of 130, 141–7, 189
testing 353
versus theistic evolutionism 112
see also intelligent design, irreducible
complexity
Crick, F. 289
Crow, J. 52, 237
curve-fitting 95
see simplicity
Da Costa, N. C. 80
Darwin, C.
on adaptation 261, 297, 361
on biogeography and common ancestry 324,
330
on evidence for common ancestry 265,
266
on fossils 324
on function-switching 161
on group selection
on imperfect adaptation 128
on intelligent design 109–12
on origin of life 276
on randomness 125
Index

on selection explaining variation 226
on similarity and common ancestry 297, 513
on space-time principle 326
on theism 186
on vestigial organs 324
Dauben, J. W. 100
Dawkins, R. 50–1, 112, 123
Davies, N. 191
decision theory 6
see also action
default reasoning 245
see also Assumptions
Dembski, W. 51, 168
De Niro fallacy 202, 208
Dennett, D. 112, 188
Descartes, R. 146
Desjardins, E.
design argument 113
and Darwin’s theory 154
and Hume 139–41, 169–70, 170
and imperfect adaptations 127
and model selection 180–2
and Paley's stone 147
and Paley’s watch 119
and problem of evil 164–7, 186
Aquinas 114–15, 177
as a likelihood argument 125, 141, 189
as an analogy argument 139–40
as an inductive sampling argument 140, 167–77, 168
existence and attributes of the designer 140, 167
necessity versus attributes of the designer 140, 167
see also irreducible complexity
Desmond, A. 187
deterministic theories 156
Diaconis, P. 104
dimension of a model 100
dispersal 326, 331
Doolittle, F. 253, 268, 273
Doyle, A. C. 57
Draper, P. 166
drift 192, 296, 345
test of common ancestry 301
as random walk 193
phenotypic and genetic 197
testing 235
Duhem, P. 57, 144, 333
dungly 205
Durham, W. 119
Dye, J. 171
Earman, J. 13, 29, 43, 156
Eaton, T. H. 244
Eddington, A. 16, 28–30, 29, 37, 41, 47, 57, 76, 116, 132
Edwards, A. 38, 51, 244
Eds, E. 13
Efron, B. 66
Eldredge, N. 358
Einstein, A. see theory of relativity
epicureanism 116, 122, 124, 137, 155
estimates versus estimators 66–7, 102
see also likelihood error
observational 57
probabilities 58
types of 58, 63
Escoto, B. 94
essentialism 364
Eve, mitochondrial 272
evidence 1–7, 32, 45–6, 52, 65, 73, 77–8, 107
absence of 323
and acceptance 5, 56, 58, 63, 64
and prediction 294
and the special consequence condition 316
and time 311, 363
concepts of 356
contrastive character of 32, 52, 61, 116, 131, 149, 152, 190, 227, 267, 314
principle of total 41–6, 46, 53, 63–4, 73, 89, 94, 105, 134, 136–9, 225, 289, 290, 308
strength of 302, 304
strengthening and weakening 43–5
see also likelihood, law of
evil 52, 165, 187
see design argument
evo-devo 213
evolution, micro and macro 182
evolutionary theory
as unifying 361
testing of 362
see also common ancestry, drift, selection
expectation 19, 21–2, 84, 86, 123
experimental design
and bayesianism 75
data interpretation 65, 78
and frequentism 74
eye architectures 212
Faloner, D. 195
fallacy of affirming the consequent 129
falsifiability 49, 129
and evolutionary theory 130
and probability statements 130
see also Modus Tollens
Farris, J. 256, 334, 349, 358
Index

Feyerabend, P. 152
fine-tuning 76
finite population size 157
see also drift
Fisher, R. A. 9, 35, 45, 49, 53–8, 61, 130, 365, 366
fishing 76
Fitelson, B. 16, 37, 51, 168
fitness function 157, 194, 196, 212
valleys in 214
footprints on beach 324
forensic tests 52
Forster, M. 84
Fossils
as ancestors or relatives 204, 324
as evidence for common ancestry 318–24
see also ancestor
free will 166
Freeland, S. 289, 313
French, S. 80
frequency data 24–7
frequency 2–3, 7, 30, 31, 32, 48, 48–9, 53, 58–72, 79, 87, 102
and stopping rules 72–8
versus bayesianism and likelihoodism 42
Frigg, R. 80
functions and teleology 114, 115, 134
Galapagos 329
Galileo 176
gases, theory of 365
Gassendi 147
Gaut, B. S. 350
Gehring, W. J. 213
gene transfer, lateral 272
genalogies, reticulate versus tree 269
see also phylogenetic trees
genetic code 289, 312
and common ancestry 289, 364
genetic fallacy 185
gill slits 305
Gillespie, J. H. 239
Gilovich, T. 96
Glymour, C. 231
goals of inference 93, 96
God’s work and word 109, 113
Goldman, N. 257
Good, I. J. 46
Goodman, S. N. 73
Gossett, W. S. 57
Gould, S. 127–8, 143, 144, 244, 261, 285, 361, 363
gradualism 320
Gray, A. 186
Griffiths, A. 160
Griffiths, P. 254
Grossman, J. 35
Hacking, I. 32, 45, 51, 57, 65, 78, 110, 119, 138
Hajek, A. 39
Hansen, N. R. 152
Hansen, T. 194, 196, 250
Hartmann, S. 80
Harvey, P. 194, 244, 248
Hasegawa, M. 341
Hauser, M. D. 80, 144
heap, paradox of 288
Hempel, C. 149, 150, 316
Hereford, J. 196
heritability 195, 282, 325
see also backwards inequality; Breeder’s equation
Herschel, J. 124
Hesse, M. 80
Hick, J. 165
Himma, K. 121
Hodge, M. J. S. 109, 330
Holmes, E. 235, 238, 240, 241
Holmes, Sherlock 57
homology 283
homoplasy 283
honeybee’s stinger 361
Hooker, J. D. 111
Hoover, K. 235
hot hands 96
Houle, E. 196
Howard-Snyder, D. 166
Howson, C. 31, 53–5, 56, 72, 74, 75
Huelsenbeck, J. 342, 351
Hull, D. 124
Hume, D. 43, 126, 139–41, 166, 169, 186
idealization 80, 81, 91, 96, 144, 156
identifiability of models 90
imperfect adaptations
and Paley 128
and natural selection 159, 213–14
independent contrasts, Felsenstein’s method of 252
indifference, principle of 21, 27–8, 306
induction 20–4, 140
eliminative 57
rules of 20–4, 25, 27
see also design argument
inertia and stasis 244, 250
information processing inequality 305, 363
insect wings 30
instrumentalism 97
see also realism and instrumentalism
intelligent design evolution 363
intelligence, evolution of 363
intelligence, evolution of
intelligent design 51
see also creationism; irreducible complexity
interleaving 100
intolerance of traits 146
see also irreducible complexity
inverse gambler’s fallacy 138
irreducible complexity 154
and epistasis 163
and fitness functions 158
and four legged horses 160
and function switching 161
and the arch 162
see also wine-bottle problem
James, W. (philosopher) 7, 188
James, W. (statistician) 66
Jeffrey, R. 12, 78
Johnson, D. 81
Johnson, P. 154, 185
Jukes, T. 284, 337
Justus, J. 149
Kadane, J. B. 77
Kaplan, M. 5
Kepler, J. 113
Keynes, J. 121
Kimura, M. 236, 237, 239, 337, 340, 361
King, A. 194
Kingsolver, J. 161
Kishino, H. 341
Kitcher, P. 110, 144, 176
Knight, R. 289
Koehl, M. 161
Koh, K. 229
Kolmogorov, A. N. 9, 39–41
Krebs, J. 191
Kreitman, M. 235, 240, 241, 243, 316
Kuhn, T. 13, 152
Kullback, S. see Kullback—Leibler Distance
Kullback—Leibler distance 98, 101
Kybburg, H. 5
Lanave, C. 337
Land, M. 213
Lande, R. 194, 196, 214
Landweber, L. 289
Lang, C. 226, 230
Ianugo 304
Laplace, P. S. de 20–4, 21, 27
Larget, B. 342
Larson, A. 203, 255
Lauder, G. 254
laws 112
Leibler, R. A. see Kullback—Leibler distance
Lewin, R. 243
Lewin, P. 334, 350
Lewontin, R. 261, 361
Li, W. H. 238
life number of start-ups 276
origin of 51, 111
see also common ancestry
likelihood 9–11, 18, 25, 30–2, 32–5, 78
and common causes 278, 281
and evidence 14
and nested models 83
and phylogenetic trees 333–4
and statistical consistency 349
average versus maximum 28, 31, 70–1,
definition of 9–10, 35
law of 32–5, 35–8, 46, 52, 55, 56, 62–3,
63, 66, 76, 77, 103, 105, 108, 121, 147,
166, 198, 233, 284, 294, 299, 309, 354,
357
maximum-estimate 23–4, 25, 65–6, 81, 83,
90, 91, 309
of selection and drift 198
principle 35
ratio 32, 43, 45–6, 46, 52, 63, 64, 66, 73,
75–8
ratio test 66, 71–2, 89–90
versus posterior probability 120, 255
likelihoodism 3, 32–5, 35, 46, 48, 49, 52, 55,
64, 65, 66, 79, 81
and Duhem’s Thesis 144
and interpretation of AIC scores 102
and stopping rules 72–8
objections to 35–41, 46–8
versus bayesianism and frequentism 37, 42
Lindley, D. V. 72
Littlewood, J. 104
longevity, sex difference in 226
lottery
models of 105
paradox 5, 50
LUCA (last universal common ancestor) 270
see also common ancestry
Lyell, C. 127
MacKay, T. 195
Maddison, W. 209, 256, 257
Markov model 215, 246, 300, 305, 337, 354,
360
Maynard Smith, J. 191, 205
Mayo, D. 76
Mayr, E. 213, 214, 245, 268, 364
McDonald, J. 240, 241, 316
McDonald–Kreitman test 240, 316
McMullin, E. 80, 144
Mendelism 26, 26
model selection 79, 226, 228, 335, 341, 362
and coin tossing 177–80
and intelligent design 177–84
Bayesian 92
see also Akaike information criterion; natural
selection; phylogenetic inference
models
and character evolution 335
averaging 95
fit to data 85
fitted versus unfitted 98
in logic 80
LIN and PAR 67–72, 79, 83–90, 90, 93–4, 100–1
nested 69, 71, 83, 89, 93
of no common mechanism 345
parameters in 67, 69, 79, 81, 83, 85, 90, 99–102
time reversible 337
modus tollens 49–50
probabilistic 49–53, 52, 53, 57, 105, 129, 192
see also falsifiability
molecular clock 236
molecular data on drift versus selection 235
monkeys and typewriters 116, 122
Morgan, M. 80
Morris, J. 187
Morris, H. 51
Morrison, M. 80
Mosteller, F. 104
Mougin, G. 6
natural selection
and common ancestry 221, 264
and dichotomous traits 217
and explaining variation 191, 219–26, 262
and imperfection 127
and perfect adaptations 159
and valley crossing 214
as biased walk 194
as non-random 123
chronological test of 253
frequency dependent 298, 299, 303, 312
fundamental theorem of 365
intensity of 195, 196
models of 193–7, 215–17, 247
of groups 245
of species 281
response to 195
versus artificial selection 188
versus drift, testing 193, 194, 353
natural theology 118–20, 124
naturalism, methodological 111
Nelson, P. 128
neutral evolution see drift
Newtonian theory 29, 32, 37, 47, 48, 57, 132
Neyman, J. see Neyman–Pearson testing
Neyman–Pearson testing 7, 49, 58–78, 79, 81, 96, 102, 238, 339
and stopping rules 72
see also significance tests
Nielsen, R. 235
Nilson, D. 213, 214
no-designer-worth-his-salt 126–8
see Panda’s thumb
null hypothesis 60–2, 69, 71, 73–8, 79, 80–1
Numbers, R. 111
O’Hara, R.J. 366
observation
absolute versus relative theory neutrality 153
as theory laden 152
observation selection effect 76
Oparin, A. 276
optimality model of when to give up 205
optimum
as attractor 194
inferring 202–7
ordnial equivalence
of definitions of confirmation 16
of parsimony and likelihood 343
Ornstein–Uhlenbeck model 194–5, 220, 222
Orr, A. 163, 281
Orzack, S. 212, 219, 243, 316
Ospovat, D. 191
P-value 54, 57, 78
Page, R. 235, 238, 240, 241
Pagel, M. 194, 244, 248
Paley, W. 118–20, 155
his design argument as a likelihood argument 121
on evil 164
on imperfect adaptation 128
your head’s pointing in the direct in which
you step 120
see also design Argument
panda’s thumb 127–8
paradox of the heap see heap, paradox of
parameters
counting numbers of 99–102
nuisance 338
parasitic wasp 186
Parker, G. 205, 211
parsimony 250
and group selection 245
and inferring ancestral trait values 209, 255, 261
and likelihood 209, 359
and probability 256
and statistical consistency 347
assumptions of 345, 351
cladistic/phylogenetic 207, 332–4, 358
model selection 207
two types of 359
Parzen, E. 215
Pascal, B. 6–7
Patterson, C. 204
Pauling, L. 290
Pearson, E. S. see Neyman–Pearson testing
Pelger, S. 214
Pennock, R. 144
Penny, D. 314–18, 350
Phillips, L. D. 72
phylogenetic inertia 243
phylogenetic inference 293–5, 352
phylogenetic trees 264, 333, 366
Piggueci, M. 192
Plantinga, A. 134, 167, 188
polymorphisms and fixed differences 240
polynomials 70–1, 82, 90
polyploidy 286, 320
Popper, K. 49, 83, 129, 130, 358
Posada, D. see model selection
prediction 79, 80, 82, 84, 95, 296, 362
predictive accuracy 84–5, 86, 87, 88, 90, 91, 95
see Akaike Information Criterion
see model selection
principle of common cause see common cause,
principle of
principle of indifference see indifference,
principle of
principle of total evidence see evidence, principle of total
prior probability 358
improper 24
objectivity of 24–8
of nested models 93
swamping of 25
probability
conditional 38
density 21–2, 27
interpretations of 12, 49
objective versus subjective 40, 47
of reconstruction of ancestral character states 255–8
unconditional 39–40
unconditional of observations 29–30
updating 11–13, 12, 50
pseudo-processes 324
quantum mechanics 231
Quine, W. 144
Raddick, G. 127
random versus biased processes 122, 287, 365
Rannala, B. 351
realism and instrumentalism 96–9
see also idealization
redundancy 134
see also irreducible complexity
Reichenbach, H. 20–4, 24, 25, 150, 185, 231, 278, 307, 324, 358
relative rates test 238
reliability 17, 42
Ridley, M. 245
Rinard, S. 148
Robbins, H. 100
Rodriguez, F. 357
Rosales, A.
Rowe, W. 166
Royal Society 109, 116
Royall, R. 3, 8, 32, 46, 51, 51–2, 60, 62–3, 65, 77, 107, 302, 354, 357
Ruse, M. 109, 112
Russell, B. 202
Sakamoto, Y. 86, 87
Salmon, W. 278, 324
Salvini-Plavén, L. 213, 214
Scheines, R. 231
Schervish, M. 77
Schlichting, C. D. 192
Schwarz, G. 92
screening-off 255
Seidenfeld, T. 77, 78
semantics versus epistemology 12, 49, 149
see also probability, interpretations of
sex ratio, Arbuthnot on 117–18, 227
Shanks, N. 144
Shapiro, L. 195, 324
Shoesmith, E. 117
significance tests 49, 53–8, 61, 79, 130
and choice of level of significance 54, 69, 74, 76
and sample size 56
and stopping rules 72
rejection versus evidential interpretations 54–5, 56
similarity
adaptive 297, 302
defterious 303
neutral 298, 306
similarity (cont.)
overall 294
see also common ancestry
Simon, H. A. 123
simplicity 81–2, 83, 85, 88, 90, 97, 179
and fit trade-off 86
inductive and descriptive 358
see also parsimony
Skyrms, B. 150
smoking 226, 247, 248
Snyder, L. J. 109
Sorensen, R. 5
species 226
Spirtes, P. 231
St. Petersburg Paradox 78
see also expectation
Stanford, K. 97
Stanley, S. 281
Steel, M. 271, 305, 314, 345, 347, 349, 350, 351, 363
Stein, C. 66
Stephens, C. 51
Sterelny, K. 254
Stone, M. 88
stopping rules 72–8
Strier, K. 226, 230
Stuart, R. 205, 211
subfamily problem 93–5 see Akaike Information Criterion
Sugiura, N. 95
Swofford, D. 337, 338
Swift, J. 116, 124
synapomorphies 266
Taketechi, K. 95–164
Taveré, S. 337
teleology see also functions and teleology
testability 129, 148–54, 355
and creationism 130, 141–7, 189
and evolutionary theory 189
and logical positivism 149
testing, contrastive character of 32, 52, 61, 116, 131, 149, 152, 190, 227, 267, 314, 353, 354
tetrapods 244
theft versus honest toil 202
theistic evolutionism 110, 112
theodicy 165
theory of relativity 16, 26–7, 28–31, 32, 37, 41, 47, 48, 57, 132
topological invariance 100
trait see character
transformation series 284
tree thinking 366

truly large numbers, law of 104, 348–51
truth versus predictive accuracy as inference goals 80–1, 97
Tuffley, C. 345, 347, 349, 351
Turelli, M. 198
turkey baldness 226
unbiased estimators 86–7, 92
unification 106, 110, 226, 228, 360
see also common cause, principle of; parsimony; simplicity
uniformity of nature 87, 177
Urbach, P. 53–5, 56, 72, 74, 75
useful and intolerant traits 133, 147
see also irreducible complexity
utilitarianism 65
vagueness 5 see also heap, paradox of validity 1, 25, 49, 50, 53, 129
desirability 7
values and ethics 7, 60, 78
Van Fraassen, B. 231
Van Inwagen, P. 137
Van Tienderen, P. H. 192
variation, among and within species 219–26, 229
Vrba, E. 261
vulture 226
Wagner, C. 53
Wake, D. B. 250
Wald, A. 78
Walsh, D. 195
Wardrop, R. 96
Wedgewood, E. 187
Whewell, W. 109–10, 366
Wiley, E. O. 358
Williams, G. C. 261
Williamson, T. 5
Wilson, D. S. 261
Wilson, E. O. 244
wine bottle problem 135–6, 146
see also irreducible complexity
witness testimony 42–3
Wittgenstein, L. 90
Woese, C. 268, 273
Woodward, J. 231
Wright, L. 115
Wykstra, S. 167
Yang, Z. 351
Young, R. 191
Yule, G. U. 233
Zuckerkandl, E. 290