
Cambridge University Press
978-0-521-87158-7 — Numerical and Statistical Methods for Bioengineering
Michael R. King , Nipa A. Mody 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1 Types and sources of numerical error

1.1 Introduction

The job of a biomedical engineer often involves the task of formulating and solving

mathematical equations that define, for example, the design criteria of biomedical

equipment or a prosthetic organ or physiological/pathological processes occurring

in the human body. Mathematics and engineering are inextricably linked. The types

of equations that one may come across in various fields of engineering vary widely,

but can be broadly categorized as: linear equations in one variable, linear equations

with respect to multiple variables, nonlinear equations in one or more variables,

linear and nonlinear ordinary differential equations, higher order differential equa-

tions of nth order, and integral equations. Not all mathematical equations are

amenable to an analytical solution, i.e. a solution that gives an exact answer either

as a number or as some function of the variables that define the problem. For

example, the analytical solution for

(1) x2 þ 2xþ 1 ¼ 0 is x ¼ �1, and

(2) dy=dxþ 3x ¼ 5, with initial conditions x ¼ 0; y ¼ 0, is y ¼ 5x� 3x2=2.

Sometimes the analytical solution to a system of equations may be exceedingly

difficult and time-consuming to obtain, or once obtained may be too complicated

to provide insight.

The need to obtain a solution to these otherwise unsolvable problems in a

reasonable amount of time and with the resources at hand has led to the develop-

ment of numerical methods. Such methods are used to determine an approximation

to the actual solution within some tolerable degree of error. A numerical method

is an iterative mathematical procedure that can be applied to only certain types

or forms of a mathematical equation, and under usual circumstances allows the

solution to converge to a final value with a pre-determined level of accuracy or

tolerance. Numerical methods can often provide exceedingly accurate solutions for

the problem under consideration. However, keep in mind that the solutions are

rarely ever exact. A closely related branch of mathematics is numerical analysis,

which goes hand-in-hand with the development and application of numerical meth-

ods. This related field of study is concerned with analyzing the performance

characteristics of established numerical methods, i.e. how quickly the numerical

technique converges to the final solution and accuracy limitations. It is important

to have, at the least, basic knowledge of numerical analysis so that you can make an

informed decision when choosing a technique for solving a numerical problem. The

accuracy and precision of the numerical solution obtained is dependent on a number

of factors, which include the choice of the numerical technique and the implementa-

tion of the technique chosen.

Errors can creep into any mathematical solution or statistical analysis in several

ways. Human mistakes include, for example, (1) entering incorrect data into

www.cambridge.org/9780521871587
www.cambridge.org


Cambridge University Press
978-0-521-87158-7 — Numerical and Statistical Methods for Bioengineering
Michael R. King , Nipa A. Mody 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

a computer, (2) errors in the mathematical expressions that define the problem, or

(3) bugs in the computer program written to solve the engineering or math problem,

which can result from logical errors in the code. A source of error that we have less

control over is the quality of the data. Most often, scientific or engineering data

available for use are imperfect, i.e. the true values of the variables cannot be

determined with complete certainty. Uncertainty in physical or experimental data

is often the result of imperfections in the experimental measuring devices, inability to

reproduce exactly the same experimental conditions and outcomes each time, the

limited size of sample available for determining the average behavior of a popula-

tion, presence of a bias in the sample chosen for predicting the properties of the

population, and inherent variability in biological data. All these errors may to some

extent be avoided, corrected, or estimated using statistical methods such as con-

fidence intervals. Additional errors in the solution can also stem from inaccuracies in

the mathematical model. The model equations themselves may be simplifications of

actual phenomena or processes being mimicked, and the parameters used in the

model may be approximate at best.

Even if all errors derived from the sources listed above are somehow eliminated,

we will still find other errors in the solution, called numerical errors, that arise when

using numerical methods and electronic computational devices to perform nume-

rical computations. These are actually unavoidable! Numerical errors, which can be

broadly classified into two categories – round-off errors and truncation errors – are

an integral part of these methods of solution and preclude the attainment of an exact

solution. The source of these errors lies in the fundamental approximations and/or

simplifications that are made in the representation of numbers as well as in the

mathematical expressions that formulate the numerical problem. Any computing

device you use to perform calculations follows a specific method to store numbers in

amemory in order to operate upon them. Real numbers, such as fractions, are stored

in the computer memory in floating-point format using the binary number system,

and cannot always be stored with exact precision. This limitation, coupled with the

finite memory available, leads to what is known as round-off error. Even if the

numerical method yields a highly accurate solution, the computer round-off error

will pose a limit to the final accuracy that can be achieved.

You should familiarize yourself with the types of errors that limit the precision

and accuracy of the final solution. By doing so, you will be well-equipped to

(1) estimate the magnitude of the error inherent in your chosen numerical method,

(2) choose the most appropriate method for solution, and (3) prudently implement

the algorithm of the numerical technique.

The origin of round-off error is best illustrated by examining how numbers are

stored by computers. In Section 1.2, we look closely at the floating-point represen-

tation method for storing numbers and the inherent limitations in numeric precision

and accuracy as a result of using binary representation of decimal numbers and finite

memory resources. Section 1.3 discusses methods to assess the accuracy of estimated

or measured values. The accuracy of any measured value is conveyed by the number

of significant digits it has. The method to calculate the number of significant digits is

covered in Section 1.4. Arithmetic operations performed by computers also generate

round-off errors. While many round-off errors are too small to be of significance,

certain floating-point operations can produce large and unacceptable errors in the

result and should be avoided when possible. In Section 1.5, strategies to prevent the

inadvertent generation of large round-off errors are discussed. The origin of trunca-

tion error is examined in Section 1.6. In Section 1.7 we introduce useful termination

2 Types and sources of numerical error

www.cambridge.org/9780521871587
www.cambridge.org


Cambridge University Press
978-0-521-87158-7 — Numerical and Statistical Methods for Bioengineering
Michael R. King , Nipa A. Mody 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Box 1.1A Oxygen transport in skeletal muscle

Oxygen is required by all cells to perform respiration and thereby produce energy in the form of ATP to
sustain cellular processes. Partial oxidation of glucose (energy source) occurs in the cytoplasm of the
cell by an anaerobic process called glycolysis that produces pyruvate. Complete oxidation of pyruvate to
CO2 and H2O occurs in the mitochondria, and is accompanied by the production of large amounts of ATP.
If cells are temporarily deprived of an adequate oxygen supply, a condition called hypoxia develops. In
this situation, pyruvate no longer undergoes conversion in the mitochondria and is instead converted to
lactic acid within the cytoplasm itself. Prolonged oxygen starvation of cells leads to cell death, called
necrosis.

The circulatory system and the specialized oxygen carrier, hemoglobin, cater to the metabolic needs
of the vast number of cells in the body. Tissues in the body are extensively perfused with tiny blood
vessels in order to enable efficient and timely oxygen transport. The oxygen released from the red blood
cells flowing through the capillaries diffuses through the blood vessel membrane and enters into the
tissue region. The driving force for oxygen diffusion is the oxygen concentration gradient at the vessel
wall and within the tissues. The oxygen consumption by the cells in the tissues depletes the oxygen
content in the tissue, and therefore the oxygen concentration is always lower in the tissues as compared
to its concentration in arterial blood (except when O2 partial pressure in the air is abnormally low, such
as at high altitudes). During times of strenuous activity of the muscles, when oxygen demand is greatest,
the O2 concentrations in the muscle tissue are the lowest. At these times it is critical for oxygen transport
to the skeletal tissue to be as efficient as possible.

The skeletal muscle tissue sandwiched between two capillaries can be modeled as a slab of length L
(see Figure 1.1). Let N(x, t) be the O2 concentration in the tissue, where 0≤ x≤ L is the distance along
the muscle length and t is the time. Let D be the O2 diffusivity in the tissue and let Γ be the volumetric
rate of O2 consumption within the tissue.

Performing an O2 balance over the tissue produces the following partial differential equation:

∂N

∂t
¼ D

∂
2N

∂x2
� Γ:

The boundary conditions for the problem are fixed at N(0, t) = N(L, t) = No, where No is the supply
concentration of O2 at the capillary wall. For this problem, it is assumed that the resistance to transport
of O2 posed by the vessel wall is small enough to be neglected. We also neglect the change in
O2 concentration along the length of the capillaries. The steady state or long-term O2 distribution in the
tissue is governed by the ordinary differential equation

D
∂
2N

∂x2
¼ Γ;

Figure 1.1

Schematic of O2 transport in skeletal muscle tissue.

N (x, t )

N0

Muscle

tissue

L

B
lo

o
d
 c

a
p
ill

a
ry

B
lo

o
d
 c

a
p
ill

a
ry

x

N0

3 1.1 Introduction

www.cambridge.org/9780521871587
www.cambridge.org


Cambridge University Press
978-0-521-87158-7 — Numerical and Statistical Methods for Bioengineering
Michael R. King , Nipa A. Mody 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

criteria for numerical iterative procedures. The use of robust convergence criteria is

essential to obtain reliable results.

1.2 Representation of floating-point numbers

The arithmetic calculations performed when solving problems in algebra and calcu-

lus produce exact results that are mathematically sound, such as:

2:5

0:5
¼ 5;

ffiffiffi

83
p
ffiffiffi

4
p ¼ 1; and

d

dx

ffiffiffi

x
p

¼ 1

2
ffiffiffi

x
p :

Computations made by a computer or a calculator produce a true result for

any integer manipulation, but have less than perfect precision when handling

real numbers. It is important at this juncture to define the meaning of “pre-

cision.” Numeric precision is defined as the exactness with which the value of a

numerical estimate is known. For example, if the true value of
ffiffiffi

4
p

is 2 and the

computed solution is 2.0001, then the computed value is precise to within the

first four figures or four significant digits. We discuss the concept of significant

digits and the method of calculating the number of significant digits in a

number in Section 1.4.

Arithmetic calculations that are performed by retaining mathematical symbols,

such as 1/3 or
ffiffiffi

7
p

, produce exact solutions and are called symbolic computations.

Numerical computations are not as precise as symbolic computations since numer-

ical computations involve the conversion of fractional numbers and irrational

numbers to their respective numerical or digital representations, such as 1/3 ∼

0.33333 or
ffiffiffi

7
p
∼ 2.64575. Numerical representation of numbers uses a finite number

of digits to denote values that may possibly require an infinite number of digits and

are, therefore, often inexact or approximate. The precision of the computed value is

equal to the number of digits in the numerical representation that tally with the true

digital value. Thus 0.33333 has a precision of five significant digits when compared to

the true value of 1/3, which is also written as 0.3. Here, the overbar indicates infinite

repetition of the underlying digit(s). Calculations using the digitized format to

represent all real numbers are termed as floating-point arithmetic. The format

whose solution is given by

Ns ¼ No �
Γx

2D
L� xð Þ:

Initially, the muscles are at rest, consuming only a small quantity of O2, characterized by a volumetric O2
consumption rate Γ1. Accordingly, the initial O2 distribution in the tissue is No � Γ1x

2D
L� xð Þ.

Now the muscles enter into a state of heavy activity characterized by a volumetric O2 consumption
rate Γ2. The time-dependent O2 distribution is given by a Fourier series solution to the above partial
differential equation:

N ¼ No �
Γ2x

2D
L� xð Þ þ 4 Γ2 � Γ1ð ÞL2

D

X

∞

n¼1; n is odd

1

nπð Þ3
e� nπð Þ2Dt=L2 sin

nπx

L

� �

" #

:

In Section 1.6 we investigate the truncation error involved when arriving at a solution to the
O2 distribution in muscle tissue.

4 Types and sources of numerical error

www.cambridge.org/9780521871587
www.cambridge.org


Cambridge University Press
978-0-521-87158-7 — Numerical and Statistical Methods for Bioengineering
Michael R. King , Nipa A. Mody 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

standards for floating-point number representation by computers are specified by the

IEEE Standard 754. The binary or base-2 system is used by digital devices for storing

numbers and performing arithmetic operations. The binary system cannot precisely

represent all rational numbers in the decimal or base-10 system. The imprecision or

error inherent in computing when using floating-point number representation is

called round-off error. Round-off thus occurs when real numbers must be approxi-

mated using a limited number of significant digits. Once a round-off error is

introduced in a floating-point calculation, it is carried over in all subsequent com-

putations. However, round-off is of fundamental advantage to the efficiency of

performing computations. Using a fixed and finite number of digits to represent

Box 1.2 Accuracy versus precision: blood pressure measurements

It is important that we contrast the two terms accuracy and precision, which are often confused.
Accuracymeasures how close the estimate of a measured variable or an observation is to its true value.
Precision is the range or spread of the values obtained when repeated measurements are made of the
same variable. A narrow spread of values indicates good precision.

For example, a digital sphygmomanometer consistently provides three readings of the systolic/
diastolic blood pressure of a patient as 120/80mm Hg. If the true blood pressure of the patient at the
time the measurement was made is 110/70mm Hg, then the instrument is said to be very precise, since
it provided similar readings every time with few fluctuations. The three instrument readings are “on the
same mark” every time. However, the readings are all inaccurate since the “correct target or mark” is not
120/80mm Hg, but is 110/70 mm Hg.

An intuitive example commonly used to demonstrate the difference between accuracy and precision
is the bulls-eye target (see Figure 1.2).

Figure 1.2

The bulls-eye target demonstrates the difference between accuracy and precision.

Highly accurate and precise Very precise but poor accuracy

Accurate on average but poor precision Bad accuracy and precision

5 1.2 Representation of floating-point numbers

www.cambridge.org/9780521871587
www.cambridge.org


Cambridge University Press
978-0-521-87158-7 — Numerical and Statistical Methods for Bioengineering
Michael R. King , Nipa A. Mody 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

each number ensures a reasonable speed in computation and economical use of the

computer memory.

Round-off error results from a trade-off between the efficient use of computer memory and accuracy.

Decimal floating-point numbers are represented by a computer in standardized

format as shown below:

�0:f1f2f3f4f5f6 . . . fs�1fs � 10k;

j----------------------------j j---j
" "

significand 10 raised to the power k

where f is a decimal digit from 0 to 9, s is the number of significant digits, i.e. the

number of digits in the significand as dictated by the precision limit of the computer,

and k is the exponent. The advantage of this numeric representation scheme is that

the range of representable numbers (as determined by the largest and smallest values

of k) can be separated from the degree of precision (which is determined by the

number of digits in the significand). The power or exponent k indicates the order of

magnitude of the number. The notation for the order of magnitude of a number is

O(10k). Section 1.7 discusses the topic of “estimation of order of magnitude” inmore

detail.

This method of numeric representation provides the best approximation possible

of a real number within the limit of s significant digits. The real number may,

however, require an infinite number of significant digits to denote the true value

with perfect precision. The value of the last significant digit of a floating-point number

is determined by one of two methods.

(1) Truncation Here, the numeric value of the digit fs+1 is not considered. The value of

the digit fs is unaffected by the numeric value of fs+1. The floating-point number with

s significant digits is obtained by dropping the (s+1)th digit and all digits to its

right.

(2) Rounding If the value of the last significant digit fs depends on the value of the digits

being discarded from the floating-point number, then this method of numeric

representation is called rounding. The generally accepted convention for rounding

is as follows (Scarborough, 1966):

(a) if the numeric value of the digits being dropped is greater than five units of the

fs+1th position, then fs is changed to fs+1;

(b) if the numeric value of the digits being dropped is less than five units of the fs+1th

position, then fs remains unchanged;

(c) if the numeric value of the digits being dropped equals five units of the fs+1th

position, then

(i) if fs is even, fs remains unchanged,

(ii) if fs is odd, fs is replaced by fs+1.

This last convention is important since, on average, one would expect the

occurrence of the fs digit as odd only half the time. Accordingly, by leaving fs
unchanged approximately half the time when the fs+1 digit is exactly equal to

five units, it is intuitive that the errors caused by rounding will to a large extent

cancel each other.

6 Types and sources of numerical error

www.cambridge.org/9780521871587
www.cambridge.org


Cambridge University Press
978-0-521-87158-7 — Numerical and Statistical Methods for Bioengineering
Michael R. King , Nipa A. Mody 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

As per the rules stated above, the following six numbers are rounded to retain

only five digits:

0.345903 → 0.34590,

13.85748 → 13.857,

7983.9394 → 7983.9,

5.20495478 → 5.2050,

8.94855 → 8.9486,

9.48465 → 9.4846.

The rounding method is used by computers to store floating-point numbers. Every

machine number is precise to within 5× 10−(s+1) units of the original real number,

where s is the number of significant figures.

Using MATLAB

A MATLAB function called round is used to round numbers to their nearest

integer. The number produced by round does not have a fractional part. This

function rounds down numbers with fractional parts less than 0.5 and rounds up

for fractional parts equal to or greater than 0.5. Try using round on the numbers

1.1, 1.5, 2.50, 2.49, and 2.51. Note that the MATLAB function round does not

round numbers to s significant digits as discussed in the definition above for

rounding.

1.2.1 How computers store numbers

Computers store all data and instructions in binary coded format or the base-2

number system. The machine language used to instruct a computer to execute

various commands and manipulate operands is written in binary format – a number

system that contains only two digits: 0 and 1. Every binary number is thus con-

structed from these two digits only, as opposed to the base-10 number system that

uses ten digits to represent numbers. The differences between these two number

systems can be further understood by studying Table 1.1.

Each digit in the binary system is called a bit (binary digit). Because a bit can take

on two values, either 0 or 1, each value can represent one of two physical states – on

or off, i.e. the presence or absence of an electrical pulse, or the ability of a transistor

to switch between the on and off states. Binary code is thus found to be a convenient

method of encoding instructions and data since it has obvious physical significance

and can be easily understood by the operations performed by a computer.

The range of the magnitude of numbers, as well as numeric precision that a

computer can work with, depends on the number of bits allotted for representing

numbers. Programming languages, such as Fortran and C, and mathematical soft-

ware packages such as MATLAB allow users to work in both single and double

precision.

1.2.2 Binary to decimal system

It is important to be familiar with the methods for converting numbers from one

base to another in order to understand the inherent limitations of computers in

working with real numbers in our base-10 system. Once you are well-versed in the

7 1.2 Representation of floating-point numbers

www.cambridge.org/9780521871587
www.cambridge.org


Cambridge University Press
978-0-521-87158-7 — Numerical and Statistical Methods for Bioengineering
Michael R. King , Nipa A. Mody 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

ways in which round-off errors can arise in different situations, you will be able to

devise suitable algorithms that are more likely to minimize round-off errors. First,

let’s consider the method of converting binary numbers to the decimal system. The

decimal number 111 can be expanded to read as follows:

111 ¼ 1� 102 þ 1� 101 þ 1� 100

¼ 100þ 10þ 1

¼ 111:

Thus, the position of a digit in any number specifies the magnitude of that particular

digit as indicated by the power of 10 that multiplies it in the expression above. The

first digit of this base-10 integer from the right is a multiple of 1, the second digit is a

multiple of 10, and so on. On the other hand, if 111 is a binary number, then the same

number is now equal to

111 ¼ 1� 22 þ 1� 21 þ 1� 20

¼ 4þ 2þ 1

¼ 7 in base 10:

The decimal equivalent of 111 is also provided in Table 1.1. In the binary system, the

position of a binary digit in a binary number indicates towhich power themultiplier, 2, is

raised.Note that the largest decimalvalueof abinarynumber comprisingnbits is equal to

2n – 1. For example, the binary number 11111 has 5 bits and is the binary equivalent of

11111 ¼ 1� 24 þ 1� 23 þ 1� 22 þ 1� 21 þ 1� 20

¼ 16þ 8þ 4þ 2þ 1

¼ 31

¼ 25 � 1:

Table 1.1. Equivalence of numbers in the decimal (base-10) and binary (base-2)

systems

Decimal system

(base 10)

Binary system

(base 2) Conversion of binary number to decimal number

0 0 0× 20 =0

1 1 1× 20 =1

2 1 0 1× 21 + 0×20 = 2

3 1 1 1× 21 + 1×20 = 3

4 1 0 0 1× 22 +0× 21 +0× 20 =4

5 1 0 1 1× 22 +0× 21 + 1× 20 =5

6 1 1 0 1× 22 +1× 21 + 0× 20 =6

7 1 1 1 1× 22 +1× 21 +1× 20 =7

8 1 0 0 0 1× 23 +0× 22 +0× 21 +0× 20 =8

9 1 0 0 1 1× 23 +0× 22 +0× 21 +1× 20 =9

10 1 0 1 0 1× 23 + 0× 22 +1× 21 +0× 20 =10

" " " "
2
3
2
2
2
1
2
0

binary position indicators

8 Types and sources of numerical error

www.cambridge.org/9780521871587
www.cambridge.org


Cambridge University Press
978-0-521-87158-7 — Numerical and Statistical Methods for Bioengineering
Michael R. King , Nipa A. Mody 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

What is the range of integers that a computer can represent? A certain fixed number

of bits, such as 16, 32, or 64 bits, are allotted to represent every integer. This fixed

maximum number of bits used for storing an integer value is determined by the

computer hardware architecture. If 16 bits are used to store each integer value in

binary form, then the maximum integer value that the computer can represent

is 216 – 1=65 535. To include representation of negative integer values, 32 768 is

subtracted internally from the integer value represented by the 16-bit number to

allow representation of integers in the range of [−32 768, 32 767].

What if we have a fractional binary number such as 1011.011 and wish to

convert this binary value to the base-10 system? Just as a digit to the right of a

radix point (decimal point) in the base-10 system represents a multiple of 1/10

raised to a power depending on the position or place value of the decimal digit

with respect to the decimal point, similarly a binary digit placed to the right of a

radix point (binary point) represents a multiple of 1/2 raised to some power that

depends on the position of the binary digit with respect to the radix point. In

other words, just as the fractional part of a decimal number can be expressed as a

sum of the negative powers of 10 (or positive powers of 1/10), similarly a binary

number fraction is actually the sum of the negative powers of 2 (or positive

powers of 1/2). Thus, the decimal value of the binary number 1011.011 is calcu-

lated as follows:

ð1� 23Þ þ ð0� 22Þ þ ð1� 21Þ þ ð1� 20Þ þ ð0� ð1=2Þ1Þ
þ ð1� ð1=2Þ2Þ þ ð1� ð1=2Þ3Þ
¼ 8þ 2þ 1þ 0:25þ 0:125

¼ 11:375:

1.2.3 Decimal to binary system

Now let’s tackle the method of converting decimal numbers to the base-2 system.

Let’s start with an easy example that involves the conversion of a decimal integer, say

123, to a binary number. This is simply done by resolving the integer 123 as a series of

powers of 2, i.e. 123=26 + 25 + 24 + 23 + 21 + 20 =64+32+16+8+2+1.

The powers to which 2 is raised in the expression indicate the positions for the binary

digit 1. Thus, the binary number equivalent to the decimal value 123 is 1111011,

which requires 7 bits. This expansion process of a decimal number into the sum of

powers of 2 is tedious for large decimal numbers. A simplified and straightforward

procedure to convert a decimal number into its binary equivalent is shown below

(Mathews and Fink, 2004).

We can express a positive base-10 integer I as an expansion of powers of

2, i.e.

I ¼ bn � 2n þ bn�1 � 2n�1 þ � � � þ b2 � 22 þ b1 � 21 þ b0 � 20;

where b0, b1, . . . , bn are binary digits each of value 0 or 1. This expansion can be

rewritten as follows:

I ¼ 2ðbn � 2n�1 þ bn�1 � 2n�2 þ � � � þ b2 � 21 þ b1 � 20Þ þ b0

or

I ¼ 2� I1 þ b0;

9 1.2 Representation of floating-point numbers

www.cambridge.org/9780521871587
www.cambridge.org


Cambridge University Press
978-0-521-87158-7 — Numerical and Statistical Methods for Bioengineering
Michael R. King , Nipa A. Mody 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

where

I1 ¼ bn � 2n�1 þ bn�1 � 2n�2 þ � � � þ b2 � 21 þ b1 � 20:

By writing I in this fashion, we obtain b0.

Similarly,

I1 ¼ 2ðbn � 2n�2 þ bn�1 � 2n�3 þ � � � þ b2 � 20Þ þ b1;

i.e.

I1 ¼ 2� I2 þ b1;

from which we obtain b1 and

I2 ¼ bn � 2n�2 þ bn�1 � 2n�3 þ � � � þ b2 � 20:

Proceeding in this way we can easily obtain all the digits in the binary representation

for I.

Example 1.1 Convert the integer 5089 in base-10 into its binary equivalent. Based on the

preceding discussion, 5089 can be written as

5089 ¼ 2� 2544þ 1 ! b0 ¼ 1

2544 ¼ 2� 1272þ 0 ! b1 ¼ 0

1272 ¼ 2� 636þ 0 ! b2 ¼ 0

636 ¼ 2� 318þ 0 ! b3 ¼ 0

318 ¼ 2� 159þ 0 ! b4 ¼ 0

159 ¼ 2� 79þ 1 ! b5 ¼ 1

79 ¼ 2� 39þ 1 ! b6 ¼ 1

39 ¼ 2� 19þ 1 ! b7 ¼ 1

19 ¼ 2� 9þ 1 ! b8 ¼ 1

9 ¼ 2� 4þ 1 ! b9 ¼ 1

4 ¼ 2� 2þ 0 ! b10 ¼ 0

2 ¼ 2� 1þ 0 ! b11 ¼ 0

1 ¼ 2� 0þ 1 ! b12 ¼ 1

Thus the binary equivalent of 5089 has 13 binary digits and is 1001111100001. This algorithm, used to

convert a decimal number into its binary equivalent, can be easily incorporated into a MATLAB program.

1.2.4 Binary representation of floating-point numbers

Floating-point numbers are numeric quantities that have a significand indicating the

value of the number, which is multiplied by a base raised to some power. You are

10 Types and sources of numerical error

www.cambridge.org/9780521871587
www.cambridge.org

