
1
Channels, codes and capacity

In this chapter we introduce our task: communicating a digital message without
error (or with as few errors as possible) despite an imperfect communications
medium. Figure 1.1 shows a typical communications system. In this text we
will assume that our source is producing binary data, but it could equally be an
analog source followed by analog-to-digital conversion.

Through the early 1940s, engineers designing the first digital communications
systems, based on pulse code modulation, worked on the assumption that infor-
mation could be transmitted usefully in digital form over noise-corrupted com-
munication channels but only in such a way that the transmission was unavoid-
ably compromised. The effects of noise could be managed, it was believed, only
by increasing the transmitted signal power enough to ensure that the received
signal-to-noise ratio was sufficiently high.

Shannon’s revolutionary 1948 work changed this view in a fundamental way,
showing that it is possible to transmit digital data with arbitrarily high reliability,
over noise-corrupted channels, by encoding the digital message with an error
correction code prior to transmission and subsequently decoding it at the receiver.
The error correction encoder maps each vector of K digits representing the
message to longer vectors of N digits known as codewords. The redundancy
implicit in the transmission of codewords, rather than the raw data alone, is the
quid pro quo for achieving reliable communication over intrinsically unreliable
channels. The code rate r = K/N defines the amount of redundancy added by
the error correction code. The transmitted bits may be corrupted in some way
by the channel, and it is the function of the error correction decoder to use the
added redundancy to determine the corresponding K message bits despite the
imperfect reception.

In this chapter we will introduce the basic ideas behind error correction. In
Section 1.1 we describe the channels considered in this text and in Section 1.2 the
fundamental limits to communicating on those channels. Finally, in Section 1.3
we introduce error correction techniques.
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2 Channels, codes and capacity
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Figure 1.1 A typical communications system.

1.1 Binary input memoryless channels

A discrete channel is one that transmits a symbol x from a discrete set X =
{X1, X1, . . . , Xl}, known as the source alphabet, and returns a symbol y from
another (possibly different) discrete alphabet, Y = {Y1, Y1, . . . , Ym}. A binary
input channel transmits two discrete symbols, usually 0, 1, or 1, −1. The channel
can also output binary symbols but may equally well output symbols from a larger
discrete alphabet or a continuous range of values. Unfortunately, the channels do
not always map a given transmitted symbol to the same received symbol (which
is why we need error correction).

A communication channel can be modeled as a random process. For a given
symbol xi transmitted at time i , such that xi is one of the symbols from the set
X , i.e. xi = X j ∈ {X1, X1, . . . , Xl}, the channel transition probability p(y|x) =
p(y = Y j |x = X j ) gives the probability that the returned symbol yi at time i is
the symbol Yi from the set Y , i.e. yi = Y j ∈ {Y1, Y1, . . . , Ym}. A channel is said to
be memoryless if the channel output at any time instant depends only on the input
at that time instant, not on previously transmitted symbols. More precisely, for
a sequence of transmitted symbols x = [x1, x2, . . . , xN ] and received symbols
y = [y1, y2, . . . , yN ]:

p(y|x) =
N∏

i=1

p(yi |xi ). (1.1)

A memoryless channel is therefore completely described by its input and output
alphabets and the conditional probability distribution p(y|x) for each input–
output symbol pair.

The three channels we consider in this text are the binary symmetric channel
(BSC), the binary erasure channel (BEC) and the binary input additive white
Gaussian noise (BI-AWGN) channel. They are all binary input memoryless
channels.

Example 1.1 The binary symmetric channel (BSC) shown in Figure 1.2 transmits
one of two symbols, the binary digits x ∈ {0, 1}, and returns one of two symbols,
y ∈ {0, 1}. This channel flips the transmitted bit with probability ε, i.e. with
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1.1 Binary input memoryless channels 3
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Figure 1.2 The binary symmetric channel (BSC).

probability ε the symbol y output by the channel is not the symbol that was
sent and with probability 1 − ε the symbol y is the symbol that was sent. The
parameter ε is called the crossover probability of the channel. So, for the BSC
the channel transition probabilities are:

p(y = 0|x = 0) = 1 − ε,

p(y = 0|x = 1) = ε,

p(y = 1|x = 0) = ε,

p(y = 1|x = 1) = 1 − ε.

A binary input channel is symmetric if both input bits are corrupted equally
by the channel. The BSC channel is easily seen to be symmetric, as p(y = 0|
x = 0) = p(y = 1|x = 1) and p(y = 0|x = 1) = p(y = 1|x = 0). Indeed all
three channels we consider in this text, i.e. the BSC, BEC and BI-AWGN
channels, are symmetric.

At the decoder, the symbol y received from the channel is used to decode the
symbol x that was sent. In this case we are interested in the probability p(x |y),
i.e. given that we have received y, how likely was it that x was sent? We will
assume that each bit is equally likely to be transmitted. Thus, for the binary
symmetric channel, if y = 1 the probability that x = 1 is the probability that no
error occurred, i.e. p(x = 1|y = 1) = 1 − ε, and the probability that x = 0 is
the probability that the channel flipped the transmitted bit p(x = 0|y = 1) = ε.
Similarly, p(x = 1|y = 0) = ε and p(x = 0|y = 0) = 1 − ε.

For a binary variable x it is easy to find p(x = 1) given p(x = 0), since
p(x = 1) = 1 − p(x = 0) and so we only need to store one probability value
for x . Log likelihood ratios (LLRs) are used to represent the metrics for a binary
variable by a single value: the LLR is given by

L(x) = log
p(x = 0)

p(x = 1)
, (1.2)

where in this text we will use log to mean log to the base e, or loge. If p(x = 0) >

p(x = 1) then L(x) is positive and, furthermore, the greater the difference
between p(x = 0) and p(x = 1), i.e. the more sure we are that p(x) = 0, the
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4 Channels, codes and capacity

larger the positive value for L(x). Conversely, if p(x = 1) > p(x = 0) then L(x)
is negative and, furthermore, the greater the difference between p(x = 0) and
p(x = 1), the larger the negative value for L(x). Thus the sign of L(x) pro-
vides a hard decision (see the text after (1.9)) on x and the magnitude |L(x)| is
the reliability of this decision. Translating from LLRs back to probabilities, we
obtain

p(x = 1) = p(x = 1)/p(x = 0)

1 + p(x = 1)/p(x = 0)
= e−L(x)

1 + e−L(x)
(1.3)

and

p(x = 0) = p(x = 0)/p(x = 1)

1 + p(x = 0)/p(x = 1)
= eL(x)

1 + eL(x)
. (1.4)

A benefit of the logarithmic representation of probabilities is that when proba-
bilities need to be multiplied, log-likelihood ratios need only be added; this can
reduce the implementation complexity.

Example 1.2 Given that the probabilities p(x |y) for the BSC are{
p(xi = 1|yi ) = 1 − ε and p(xi = 0|yi ) = ε if yi = 1,

p(xi = 1|yi ) = ε and p(xi = 0|yi ) = 1 − ε if yi = 0,

the received LLRs for the i th transmitted bit are

Ri = L(xi |yi ) = log
p(xi = 0|yi )

p(xi = 1|yi )
=

{
log ε/(1 − ε) if yi = 1,

log(1 − ε)/ε if yi = 0.

Example 1.3 The binary erasure channel (BEC) shown in Figure 1.3 transmits
one of two symbols, usually the binary digits x ∈ {0, 1}. However, the receiver
either receives the bit correctly or it receives a message “e” that the bit was not
received (it was erased). The BEC erases a bit with probability ε, called the
erasure probability of the channel. Thus the channel transition probabilities for
the BEC are

p(y = 0|x = 0) = 1 − ε,

p(y = e|x = 0) = ε,

p(y = 1|x = 0) = 0,

p(y = 0|x = 1) = 0,

p(y = e|x = 1) = ε,

p(y = 1|x = 1) = 1 − ε.
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1.1 Binary input memoryless channels 5
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Figure 1.3 The binary erasure channel (BEC).

The BEC does not flip bits, so if y is received as a 1 or a 0 the receiver can be
completely certain of the value of x :

p(x = 0|y = 0) = 1,

p(x = 1|y = 0) = 0,

p(x = 0|y = 1) = 0,

p(x = 1|y = 1) = 1.

However, if the channel has erased the transmitted bit the receiver has no infor-
mation about x and can only use the a priori probabilities of the source. If the
source is equiprobable (i.e. the bits 1 and 0 are equally likely to have been sent)
the receiver can only make a fifty–fifty guess:

p(x = 0|y = e) = 0.5,

p(x = 1|y = e) = 0.5.

So, for this channel we have that the received LLRs for the i th transmitted bit
are

Ri = L(xi |yi ) = log
p(xi = 0|yi )

p(xi = 1|yi )
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

log
0

1
= −∞ if yi = 1,

log
1

0
= ∞ if yi = 0.

log
0.5

0.5
= 0 if yi = e.

The final channel we consider, and the one most commonly used by coding
theorists, is a binary input channel with additive noise modeled as samples from
a Gaussian probability distribution.

Example 1.4 The binary-input additive white Gaussian noise (BI-AWGN) chan-
nel can be described by the equation

yi = µxi + zi , (1.5)
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6 Channels, codes and capacity

where xi ∈ {−1, +1} is the i th transmitted symbol, yi is the i th received symbol
and zi is the additive noise sampled from a Gaussian random variable with mean
0 and variance σ 2. This is sometimes written zi = AWGN(0, σ ).

The probability density function for z is

p(z) = 1√
2πσ 2

e−z2/2σ 2
, (1.6)

where ex = exp(x) is the exponential function.
When transmitting a binary codeword on the BI-AWGN channel, the codeword

bits ci ∈ {0, 1} can be mapped to the symbols xi ∈ {−1, +1} in one of two ways:
{0 → 1, 1 → −1} or {0 → −1, 1 → 1}. We will use the traditional convention
{0 → 1, 1 → −1}.1

The received LLRs for the BI-AWGN channel are then

Ri = L(xi |yi ) = log
p(ci = 0|yi )

p(ci = 1|yi )

= log
p(xi = 1|yi )

p(xi = −1|yi )

= log
p(yi |xi = 1)p(xi = 1)/p(yi )

p(yi |xi = −1)p(xi = −1)/p(yi )

= log
p(yi |xi = 1)p(xi = 1)

p(yi |xi = −1)p(xi = −1)
,

where we have used Bayes’ rule

p(xi |yi ) = p(xi , yi )/p(yi ) = p(yi |xi )p(xi )/p(yi )

to substitute for p(xi = 1|yi ) and p(xi = −1|yi ). If the source is equiprobable
then p(xi = −1) = p(xi = 1), and we have

Ri = L(xi |yi ) = log
p(yi |xi = 1)

p(yi |xi = −1)
.

For the BI-AWGN channel:

p(yi |xi = 1) = 1√
2πσ 2

exp

(
− (yi − µ)2

2σ 2

)
, (1.7)

p(yi |xi = −1) = 1√
2πσ 2

exp

(
− (yi + µ)2

2σ 2

)
; (1.8)

1 The mapping {0 → 1, 1 → −1} is used because the modulo-2 arithmetic on {0, 1} maps directly to multi-
plication on {−1,+1} when this mapping is used.
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1.1 Binary input memoryless channels 7

thus

Ri = L(xi |yi ) = log

1√
2πσ 2

exp

(
− (yi − µ)2

2σ 2

)

1√
2πσ 2

exp

(
− (yi + µ)2

2σ 2

)

= log exp

(
− (yi − µ)2

2σ 2
+ (yi + µ)2

2σ 2

)

= 1

2σ 2
(−(y2

i − 2µyi + µ2) + (y2
i + 2µyi + µ2))

= 2µ

σ 2
yi . (1.9)

The LLR value for a bit ci is sometimes called a soft decision for ci . A hard
decision for ci will return ci = 0, equivalently xi = 1, if Ri is positive and
ci = 1, equivalently xi = −1, if Ri is negative.

When considering the relative noise level of a BI-AWGN channel, it is con-
venient to assume that µ = 1 and adjust σ to reflect the noise quality of the
channel. In this case Ri can be written as

Ri = 2

σ 2
yi .

Often the noise level is expressed as the ratio of the energy per transmitted
symbol, Es , and the noise power spectral density N0:

Es

N0
= µ2

2σ 2
,

and (1.5) is sometimes written in the form

yi = √
Es xi + zi .

When using error correction coding on a BI-AWGN channel, a fraction r of the
transmitted bits correspond to bits in the message and the remainder are extra,
redundant, bits added by the code. For channels using error correction the noise
level is often expressed as the ratio of energy per message bit, Eb, and N0, the
signal-to-noise ratio (SNR):

Eb

N0
= 1

r

Es

N0
= 1

r

µ2

2σ 2
,

and the received LLR is often given as

Ri = L(xi |yi ) = 4

√
Es

N0
yi = 4

√
r Eb

N0
yi ,
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8 Channels, codes and capacity
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Figure 1.4 The BI-AWGN channel; R = 4y/σ 2.

or, when µ is assumed to be 1,

Ri = 4

N0
yi .

The signal-to-noise ratio can be also expressed in dB:

Eb

N0
(dB) = 10 log10

Eb

N0
= 10 log10

µ2

2rσ 2
.

Figure 1.4 shows a block diagram for the BI-AWGN channel that we will
consider in this text.

1.2 Entropy, mutual information and capacity

In the previous section we mentioned that a communications channel can be
modeled as a random process and we described three common such models.
In this section we will define some useful properties of random variables and
use them to define limits on how well we can communicate over our three
channels.

A discrete random variable X has a symbol alphabet {X1, X2, . . . , Xq} and
probability distribution p = {p1, p2, . . . , pq}, where p j = p(x = X j ) gives the
probability that a random sample x from X will return the symbol Xi .

A continuous random variable X can take any value in an uncountable set Ax .
For example, Ax could define all real numbers between 0 and 1. A continuous
random variable has a probability density function p(x).

1.2.1 A measure of information

In order to motivate the concept of information we will consider a simple contest.
There are two competitors and each has a “black box” that emits symbols x
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1.2 Entropy, mutual information and capacity 9

from a random variable X with symbol alphabet {X1, X2} and probabilities
p1 = p(X1) = 99

100 , p2 = p(X2) = 1
100 . Each competitor receives only symbols

from their own black box. The winner of the contest is the first to correctly name
both symbols, that is, the first to have complete information about the symbol set
of X . Now, suppose on the first round the first contestant receives the symbol X1

while the second receives X2. At this point it is clear that the second contestant
is more likely to win (as in order to know both X1 and X2 the second contestant
now only needs to receive the symbol X1, which is much more likely to occur).
In a sense the second contestant has received more information about X than
the first, and this is reflected in the way information is measured. The lower the
probability that a symbol occurs, the more information that is obtained from an
occurrence of that symbol.

We denote as I (p j ) the information obtained from receiving a symbol X j ,
because the information is not a function of the symbol itself but of the symbol’s
probability of occurrence. There are three properties that we may expect the
function I (p) to have:

I1 I (p) ≥ 0, that is, the information we gain by receiving a symbol cannot be
negative (i.e. even though we may learn nothing from receiving a symbol we
cannot lose information we already have).

I2 I (p) is continuous in p.
I3 I (p1 p2) = I (p1) + I (p2), that is, the information obtained from the knowl-

edge that both X1 and X2 occurred is equal to the information obtained
from the knowledge that X1 occurred plus the information obtained from the
knowledge that X2 occurred.

The only function that satisfies all three assumptions is a logarithm:

I (p) = A log2
1

p
for some constant A > 0,

and that is why this function was proposed by Hartley in 1928 as the measure
of the information produced when a symbol with probability of occurrence p is
received. Although any logarithm would work, base 2 logarithms are used most
commonly.

The unit of measurement of information is the binary unit, and the constant
A is chosen so as to equate one binary unit to the information received from one
symbol of a binary source when both symbols are equally probable:

I (p) = A log2
1

p
= A log2

1

0.5
= A,
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10 Channels, codes and capacity

so I (p) = 1 when A = 1. Binary units (bits) are the measure of information
regardless of whether X is binary, and it is important not to confuse them with
binary digits (also shortened to bits).

1.2.2 Entropy

In the previous section we saw how to measure the information of a sample
from a binary random variable; now we look at how to measure the amount of
information in the variable itself. The information content of a random variable
X is the average information over all its symbols and is called its entropy
H (X ):

H (X ) = E[I (p(x))] =
q∑

j=1

p j I (p j ) =
q∑

j=1

p j log2
1

p j
= −

q∑
j=1

p j log2 p j .

We have assumed that the emission of a symbol is independent of time, i.e. the
fact that a given symbol is emitted at one instant has no effect on which source
symbol will be emitted at any other instant. Since the entropy is the average
information per symbol its units are bits per symbol.

Example 1.5 Consider a discrete random variable X for which each symbol is
equally likely to occur, that is p j = 1/q for all j = 1, . . . , q. Then

H (X ) =
q∑

j=1

p j log2
1

p j
=

q∑
i=1

1

q
log2 q = log2 q.

If q = 3 then

H (X ) = log2 3 = 1.585 bits per symbol.

However, for a discrete random variable X = {X1, X2, X3} with p =
{ 1

4 ,
1
4 ,

1
2}, we have

H (X ) =
q∑

j=1

p j log2
1

p j
= 1

4 log2 4 + 1
4 log2 4 + 1

2 log2 2 = 1.5 bits per symbol.

Thus the equiprobable random variable has a higher entropy.

To obtain an intuitive feel for the above result we return to our contest but this
time each competitor has a different random variable. The winner of the contest
is still the first to correctly name both symbols, that is, the first to have complete
information about their random variable.
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