LARGE-EDDY SIMULATION FOR ACOUSTICS

Noise pollution around airports, trains, and industries increasingly attracts environmental concern and regulation. Designers and researchers have intensified the use of large-eddy simulation (LES) for noise-reduced industrial design and acoustical research. This book, written by thirty experts, presents the theoretical background of acoustics and LES followed by details about numerical methods such as discretization schemes, boundary conditions, and coupling aspects. Industrially relevant, hybrid Reynolds-averaged Navier–Stokes/LES techniques for acoustic source predictions are discussed in detail. Many applications are featured ranging from simple geometries for mixing layers and jet flows to complex wing and car geometries. Selected applications include recent scientific investigations at industrial and university research institutions. Presently perfect solution methodologies that address all relevant applications do not exist; however, the book presents a state-of-the-art collection of methods, tools, and evaluation methodologies. The advantages and weaknesses of both the commercial and research methodologies are carefully presented.

Claus Wagner received his Ph.D. in Fluid Dynamics in 1995 at the Technical University of Munich, Germany. He is Honorary Professor for Industrial Aerodynamics, Ilmenau University of Technology, Germany. Since 1998, he has been a scientist in and head of the Section of Numerical Simulations for Technical Flows of the Institute for Aerodynamics and Flow Technology, German Aerospace Center, Göttingen, Germany. Dr. Wagner’s research includes experimental investigations of the resonant control of nonlinear dynamic systems, theoretical and numerical investigations of thermal convection in cylindrical containers, and direct numerical simulation and large-eddy simulations of turbulent flows in different configurations. He has held visiting positions in Gainsville, Florida, USA as well as in Bremen, Germany.

Thomas Hüttl received his Ph.D. in Fluid Dynamics in 1999 at the Technical University of Munich, Germany. His academic research included work on the direct numerical simulation of turbulent flows in curved and coiled pipes, and direct and large-eddy simulations of boundary layer flows with and without separation, in the framework of a French–German DFG-CNRS-Cooperation project. He has held visiting positions in Nantes, France and Bangalore, India. Between 2000 and 2003, he was a senior engineer for aeroacoustics at MTU Aero Engines GmbH, Germany’s leading manufacturer of engine modules and components and of complete aero engines. Dr. Hüttl led MTU’s contribution for the European research project TurboNoiseCFD and contributed to the European research project SILENCER. After some years working as IT quality manager and internal auditor, he is now Chief Privacy Officer for the entire MTU Aero Engines concern. Among his many honors, Dr. Hüttl was elected a member of the Senate of the DGLR, Deutsche Gesellschaft für Luft- und Raumfahrt - Lilienthal - Oberth e.V. in 2003 and 2006.

Pierre Sagaut received his DEA in Mechanics in 1991 and his Ph.D. in Fluid Mechanics in 1995 at Université Pierre et Marie Curie – Paris 6 (Paris, France). He worked as a research engineer at ONERA (French National Aerospace Research Center) from 1995 to 2002. He has been a professor in mechanics at University Pierre et Marie Curie – Paris 6 since 2002. He is also part-time Professor at École Polytechnique (France) and scientific consultant at ONERA, IFP, and CERFACS (France). His main research interests are fluid mechanics, aeroacoustics, numerical simulation of turbulent flows (both direct and large-eddy simulation), and numerical methods. He is also involved in uncertainty modeling for computational fluid dynamics (CFD). He has authored and coauthored more than sixty papers in peer-reviewed international journals and 130 proceedings papers. He is the author of several books dealing with turbulence modeling and simulation. He is member of several editorial boards: *Theoretical and Computational Fluid Dynamics, Journal of Scientific Computing,* and *Progress in CFD*. He received the ONERA award three times for the best publication and the John Green Prize (delivered by ICAS, 2002).
Cambridge Aerospace Series

Editors
Wei Shyy
and
Michael J. Rycroft

1. J. M. Rolfe and K. J. Staples (eds.): Flight Simulation
2. P. Berlin: The Geostationary Applications Satellite
3. M. J. T. Smith: Aircraft Noise
5. W. A. Mair and D. L. Birdsall: Aircraft Performance
7. M. J. Sidi: Spacecraft Dynamics and Control
8. J. D. Anderson: A History of Aerodynamics
10. G. A. Khoury and J. D. Gillett (eds.): Airship Technology
11. J. Fielding: Introduction to Aircraft Design
16. W. Fehse: Automatic Rendezvous and Docking of Spacecraft
17. R. D. Flack: Fundamentals of Jet Propulsion with Applications
18. E. A. Baskharone: Principles of Turbomachinery in Air-Breathing Engines
20. C. Wagner, T. Hüttl, and P. Sagaut: Large-Eddy Simulation for Acoustics
Large-Eddy Simulation for Acoustics

Edited by

CLAUS WAGNER
German Aerospace Center

THOMAS HÜTTL
MTU Aero Engines GmbH

PIERRE SAGAUT
Université Pierre et Marie Curie
Contents

List of Figures and Tables page xiii
Contributors .. xxi
Preface .. xxv

1 Introduction ... 1

1.1 The importance of acoustic research 1
Thomas Hüttl
 1.1.1 Health effects 1
 1.1.2 Activity effects 2
 1.1.3 Annoyance .. 2
 1.1.4 Technical noise sources 3
 1.1.5 Political and social reactions to noise 4
 1.1.6 Reactions of industry 5
 1.1.7 Research on acoustics by LES 5

1.2 Introduction to computational aeroacoustics 7
Manuel Keßler
 1.2.1 Definition .. 7
 1.2.2 History .. 7
 1.2.3 Aeroacoustics 8
 1.2.4 Conceptual approaches 9
 1.2.5 Remaining problem areas for sound computation 13

1.3 State of the art: LES for acoustics 15
Claus Wagner, Oliver Fleig, and Thomas Hüttl
 1.3.1 Broadband noise prediction in general 15
 1.3.2 Broadband noise prediction based on LES 17

2 Theoretical Background: Aeroacoustics 24
Avraham Hirschberg and Sjoerd Rienstra

2.1 Introduction to aeroacoustics 24

2.2 Fluid dynamics .. 25
 2.2.1 Mass, momentum, and energy equations 25
 2.2.2 Constitutive equations 28
2.2.3 Approximations and alternative forms of the basic equations 30

2.3 Free-space acoustics of a quiescent fluid 33
2.3.1 Orders of magnitude 33
2.3.2 Wave equation and sources of sound 35
2.3.3 Green's function and integral formulation 36
2.3.4 Inverse problem and uniqueness of source 38
2.3.5 Elementary solutions of the wave equation 39
2.3.6 Acoustic energy and impedance 44
2.3.7 Free-space Green's function 47
2.3.8 Multipole expansion 47
2.3.9 Doppler effect 49
2.3.10 Uniform mean flow, plane waves, and edge diffraction 52

2.4 Aeroacoustic analogies 55
2.4.1 Lighthill's analogy 55
2.4.2 Curle's formulation 59
2.4.3 Ffowcs Williams–Hawkings formulation 60
2.4.4 Choice of aeroacoustic variable 62
2.4.5 Vortex sound 65

2.5 Confined flows 68
2.5.1 Wave propagation in a duct 68
2.5.2 Low-frequency Green’s function in an infinitely long uniform duct 72
2.5.3 Low-frequency Green’s function in a duct with a discontinuity 74
2.5.4 Aeroacoustics of an open pipe termination 76

3 Theoretical Background: Large-Eddy Simulation 89
Pierre Sagaut

3.1 Introduction to large-eddy simulation 89
3.1.1 General issues 89
3.1.2 Large-eddy simulation: Underlying assumptions 90

3.2 Mathematical models and governing equations 91
3.2.1 The Navier–Stokes equations 91
3.2.2 The filtering procedure 92
3.2.3 Governing equations for LES 95
3.2.4 Extension for compressible flows 98
3.2.5 Filtering on real-life computational grids 100

3.3 Basic numerical issues in large-eddy simulation 105
3.3.1 Grid resolution requirements 105
3.3.2 Numerical error: Analysis and consequences 109
3.3.3 Time advancement 112

3.4 Subgrid-scale modeling for the incompressible case 112
3.4.1 The closure problem 112
3.4.2 Functional modeling 113
3.4.3 Structural modeling 118
3.4.4 Linear combination models, full deconvolution, and Leray's regularization 119
3.4.5 Extended deconvolution approach for arbitrary nonlinear terms 120
3.4.6 Multilevel closures 121
3.4.7 The dynamic procedure 121
3.5 Extension of subgrid models for the compressible case 125
 3.5.1 Background 125
 3.5.2 Extension of functional models 125
 3.5.3 Extension of structural models 126
 3.5.4 The MILES concept for compressible flows 126

4 Use of Hybrid RANS–LES for Acoustic Source Predictions 128
 Paul Batten, Philippe Spalart, and Marc Terracol
 4.1 Introduction to hybrid RANS–LES methods 128
 4.2 Global hybrid approaches 130
 4.2.1 The approach of Speziale 130
 4.2.2 Detached-eddy simulation 131
 4.2.3 LNS 133
 4.2.4 The approach of Menter, Kunz, and Bender 138
 4.2.5 Defining the filter width 140
 4.2.6 Modeling the noise from unresolved scales 142
 4.2.7 Synthetic reconstruction of turbulence 143
 4.2.8 The NLAS approach of Batten, Goldberg, and Chakravarthy 145
 4.3 Zonal hybrid approaches 148
 4.3.1 The approach of Quéméré and Sagaut 150
 4.3.2 The approach of Labourasse and Sagaut 150
 4.3.3 Zonal-interface boundary coupling 152
 4.4 Examples using hybrid RANS–LES formulations 154
 4.4.1 Flow in the wake of a car wing mirror 154
 4.4.2 Unsteady flow in the slat cove of a high-lift airfoil 158
 4.5 Summary of hybrid RANS–LES methods 163

5 Numerical Methods .. 167
 5.1 Spatial and temporal discretization schemes 167
 Tim Broeckhoven, Jan Ramboer, Sergey Smirnov, and Chris Lacor
 5.1.1 Introduction to discretization schemes 167
 5.1.2 Dispersion and dissipation errors 168
 5.1.3 Spatial discretization schemes 170
 5.1.4 Temporal discretization schemes 197
 5.2 Boundary conditions for LES 201
 Michael Breuer
 5.2.1 Outflow boundary conditions 203
 5.2.2 Inflow boundary conditions 204
 5.2.3 Boundary conditions for solid walls 208
 5.2.4 Far-field boundary conditions for compressible flows 214
 5.2.5 Final remark for discretization schemes 215
 5.3 Boundary conditions: Acoustics 216
 Fang Q. Hu
 5.3.1 Characteristic nonreflecting boundary condition 217
 5.3.2 Radiation boundary condition 218
 5.3.3 Absorbing-zone techniques 218
5.3.4 Perfectly matched layers
5.3.5 Summary of boundary conditions for acoustics

5.4 Some concepts of LES–CAA coupling
Wolfgang Schröder and Roland Ewert
5.4.1 LES inflow boundary
5.4.2 Silent embedded boundaries

6 Applications and Results of Large-Eddy Simulations for Acoustics
6.1 Plane and axisymmetric mixing layers
Christophe Bogey and Christophe Bailly
6.1.1 Plane mixing layer
6.1.2Axisymmetric mixing layers – jets
6.1.3 Concluding remarks for mixing layer simulations

6.2 Far-field jet acoustics
Daniel J. Bodony and Sanjiva K. Lele
6.2.1 Introduction to jet acoustics
6.2.2 Numerics of jet simulations
6.2.3 Results for jet simulations
6.2.4 Future directions of jet acoustics
6.2.5 Conclusions for far-field jet acoustics
6.2.6 Acknowledgments

6.3 Cavity noise
Xavier Gloerfelt, Christophe Bogey, and Christophe Bailly
6.3.1 Introduction to cavity noise
6.3.2 Overview of cavity-flow simulations
6.3.3 Recent achievements using LES
6.3.4 Concluding remarks for cavity noise

6.4 Aeroelastic noise
Sandrine Vergne, Jean-Marc Auger, Fred Périé, André Jacques, and Dimitri Nicoloopoulos
6.4.1 Introduction to aeroelastic noise
6.4.2 Fluid–structure interaction
6.4.3 Numerical simulation
6.4.4 Application
6.4.5 Simulation model
6.4.6 Numerical results
6.4.7 Mesh influence
6.4.8 Conclusions for aeroelastic noise prediction
6.4.9 Acknowledgment

6.5 Trailing-edge noise
Roland Ewert and Eric Manoha
6.5.1 Introduction to trailing-edge noise simulation using LES
6.5.2 Trailing-edge noise simulation using LES and APE
6.5.3 Trailing-edge noise simulation using LES, Euler equations, and the Kirchhoff integral
6.5.4 Unsteady pressure-field analysis
CONTENTS

6.6 Blunt bodies (cylinder, cars) 333
 Franco Magagnato
 6.6.1 Overview of blunt-body simulations 333
 6.6.2 Circular cylinder 335
 6.6.3 Car 345

6.7 Internal flows 349
 Philippe Lafon, Fabien Crouzet, and Jean Paul Devos
 6.7.1 Introduction to internal flows 349
 6.7.2 Computation of acoustic fluctuations due to turbulence-generated noise at low Mach number 349
 6.7.3 Computation of flow acoustic coupling in low-Mach-number ducted flows 351
 6.7.4 Computation of aeroacoustic instabilities in high-Mach-number ducted flow 354
 6.7.5 Conclusions for internal flow prediction 355

6.8 Industrial aeroacoustics analyses 356
 Fred Mendonça
 6.8.1 Introduction to industrial aeroacoustics analyses 356
 6.8.2 Preliminary considerations 357
 6.8.3 A two-step CFD modeling process (steady-state and transient) 358
 6.8.4 Postprocessing through acoustic coupling 370
 6.8.5 Conclusions for industrial aeroacoustics analyses 376
 6.8.6 Acknowledgments 376

7 Conclusions ... 378
 Claus Wagner, Pierre Sagaut, and Thomas Hützl
 7.1 Governing equations and acoustic analogies 378
 7.2 Numerical errors 384
 7.3 Initial and boundary conditions 385
 7.4 Examples 386

Appendix A. Nomenclature 389
Appendix B. Abbreviations 391
References 395
Index 429
List of Figures and Tables

Figures

1.1 Magnetic levitation hover train project Transrapid 4
1.2 Noise prediction methods 12
1.3 Insulator of a high-speed train's pantograph 21
1.4 Sketch of the insulator of a high-speed train's pantograph 22
1.5 Far-field sound-pressure spectra 22
2.1 Monopole, dipole, and quadrupole generating waves on the surface of the water around a boat 44
2.2 Sketch of scattered plane wave with mean flow 54
2.3 A potential flow through the vocal folds is silent 66
2.4 Straight duct of arbitrary cross section 68
2.5 (a) Method of images applied to a source at \(y = (y_1, y_2, y_3) \) at a distance \(y_3 \) from a hard wall \(x_3 = 0 \) has a Green's function: \(G(x, t | y, \tau) = G_0(x, t | y, \tau) + G_0(x, t | y^*, \tau) \) with \(y^* = (y_1, y_2, -y_3) \). (b) A source between two parallel hard walls generates an infinite row of images. (c) A source in a rectangular duct generates an array of sources 73
2.6 The end correction for no flow \((M_j = 0) \) and a little flow \((M_j = 0.01) \) 84
2.7 Plane-wave reflection coefficient \(|R| \) and end correction \(\delta \) at jet exhaust without coflow for \(M_j = 0.01, 0.1, \ldots, 0.6 \) 85
2.8 Plane-wave reflection coefficient \(|R| \) and end correction \(\delta \) at jet exhaust with \(M_j = 0.3 \) and coflow velocities \(M_o/M_j = 0, 0.25, 0.5, 0.75, 1 \) 86
2.9 Acoustic flow at a pipe outlet (a) for an unflanged pipe termination and (b) for a horn 87
3.1 Schematic kinetic energy spectra of resolved and subgrid scales with spectral overlap (Gaussian filter) 95
3.2 Streaks in the inner layer of the boundary layer 107
3.3 Schematic of kinetic energy transfer in isotropic turbulence 114
3.4 Schematic of the two-level filtering procedure and the Germano identity 122
4.1 Turbulence energy spectrum partitioned into resolvable and unresolvable frequencies 135
4.2 Required near-wall mesh resolutions with DNS, traditional LES, global hybrid RANS–LES, and nonlinear acoustics solvers (NLAS) based on disturbance equations 147
4.3 Initial startup transient at probe 111 (cylinder rear face) predicted by unsteady RANS and hybrid RANS–LES (LNS model) using identical base model, mesh, and time step 155

4.4 Instantaneous streamwise vorticity contours (with streamwise velocity shading) predicted by hybrid RANS–LES model 155

4.5 Resolved and unresolved (synthetically generated) signals for probe 111 (cylinder rear face) 156

4.6 Sound-pressure levels determined by resolved, unresolved, and composite signals for probe 111 (cylinder rear face) 157

4.7 Instantaneous streamwise vorticity contours (with streamwise velocity shading) predicted by the nonlinear acoustics solver (NLAS) 157

4.8 Sound-pressure levels determined by NLAS method at probe 111 (cylinder rear face) 158

4.9 Location of the LES subdomain (displayed mesh shows every eighth grid line) 159

4.10 Mean flow streamlines. Left: RANS computation, Right: Hybrid RANS–LES computation 159

4.11 Instantaneous Schlieren-like view 160

4.12 Isovalue contours of the dilatation field 160

4.13 Acoustic pressure spectrum at location S2 161

4.14 Acoustic pressure spectrum in the recirculation bubble (location S3) 162

4.15 Isovalue contours of the dilatation field 162

4.16 Acoustic pressure spectrum at the slat’s trailing edge (location S4) 163

4.17 Acoustic pressure spectrum in the slat’s wake 164

5.1 Resolution of different explicit and compact (implicit) schemes 178

5.2 Comparison of the resolution of Taylor and Fourier difference schemes 180

5.3 Effect of α_f on a second- and an eighth-order filter 188

5.4 Perturbation pressure of an acoustic wave initiated by a Gaussian pulse: comparison of solution with smooth and randomly perturbed mesh 197

5.5 Example for a reasonable choice of the integration domain (inflow and outflow boundaries) for the flow past a wing in a wind tunnel 202

5.6 Von Kármán vortex street past an inclined wing (NACA–4415) at $Re = 20,000$ and $\alpha = 12^\circ$ visualized by streaklines; four different time instants of a shedding cycle in the vicinity of the outflow boundary are shown 205

5.7 Sketch of Lund et al.’s (1998) procedure for generating appropriate inflow conditions for a boundary layer flow 206

5.8 Example for the generation of inflow data for a 90° bend using a second simulation for a straight duct flow with periodic b.c. 207

5.9 Law of the wall $u'(y^+)$ in a turbulent boundary layer without or with only a weak pressure gradient (half-logarithmic plot) 211

5.10 Sketch of the computational domains to determine, for example, trailing-edge noise with the hybrid approach 224

5.11 Sketch of the rescaling concept 226

5.12 Sketch of the flat-plate boundary layer domain (left) and the trailing-edge domain (right). The procedure to provide the inlet distribution to simulate trailing-edge flow is visualized 230
5.13 LES of a turbulent boundary layer for \(Re_\theta = 1400 \) and \(M_\infty = 0.4 \).
5.14 Transfer function \(|\tilde{F}|\) as a function of wave number \(\alpha \) scaled by damping zone thickness \(d \).
5.15 Spurious sound waves and velocity field generated at an artificial boundary at \(x = 0 \).
5.16 Pressure distribution on \(y = 35 \) in Figure 5.15 for several thickness values \(d \) and Biot–Savart’s law (denoted as compensation).

6.1 Simulation of a 2D mixing layer. (a) Snapshot of the dilatation field \(\Theta = \nabla \cdot u \) on the whole calculation domain, levels in s^{-1}. (b) View of the pairing zone with the vorticity field in the mixing layer and the dilatation field outside.
6.2 LES of a \(Re_D = 6.5 \times 10^4 \) subsonic jet. Time evolution of the fluctuating pressure \(p' \) in Pa as a function of \(t^* = tu_j/D \), at \(x = 16r_0, y = 8r_0, \) and \(z = 0 \).
6.3 LES of a \(Re_D = 6.5 \times 10^4 \) subsonic jet. Snapshot of the vorticity norm in the flow field and of the fluctuating pressure outside in the plane \(z = 0 \) at \(t^* = 7.5 \).
6.4 LES of a \(Re_D = 6.5 \times 10^4 \) subsonic jet. Snapshots of the vorticity norm in the plane \(z = 0 \) at times: (a) \(t^* = 2.2 \), (b) \(t^* = 3.5 \).
6.5 LES of a \(Re_D = 4 \times 10^5 \) subsonic jet. Snapshot of the vorticity norm in the flow field and of the fluctuating pressure outside in the plane \(z = 0 \).
6.6 LES of a \(Re_D = 4 \times 10^5 \) subsonic jet. (a) Pressure spectra at \((x = 11r_0, r = 15r_0)\). (b) Profiles of \(v_{rms}/u_j \) in the shear layer for \(r = r_0 \). Different simulations: LESac (- - -), LESamp (-----), LESshear (- - -), LESmode (-----).
6.7 Schematic of a turbulent jet issuing into a still fluid.
6.8 OASPL directivity at a distance of \(30D_j \) from the unheated, Mach 0.9 jet exit.
6.9 Centerline distribution of streamwise root-mean-square fluctuations.
6.10 Centerline distribution of density root-mean-square fluctuations normalized by the difference \((\rho_j - \rho_\infty) \).
6.11 Far-field OASPL taken at a distance of \(30D_j \) from the nozzle exit.
6.12 Integral Lagrangian time scale of streamwise fluctuations near the end of the potential core.
6.15 Far-field OASPL taken at a distance of \(30D_j \) from \(\Delta_j \) (--) and \(\Delta_{j+1} \) (-- --) from the nozzle exit.
6.16 Far-field acoustic spectra taken at a distance of \(30D_j \) from the nozzle exit.
6.17 Transition toward a wake mode for large \(L/\delta_0 \) ratio (2D DNS of the flow over an \(L/D = 4 \) cavity, at \(M = 0.5 \), and \(Re_D = 4800 \)).
6.18 LES of a deep cavity.
6.19 Influence of the boundary layer turbulence on cavity noise.
6.20 Mode switching.
6.21 The plate model.
LIST OF FIGURES AND TABLES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.22</td>
<td>Sketch of the experimental setup</td>
<td>278</td>
</tr>
<tr>
<td>6.23</td>
<td>Wall-pressure transducer positions on the elastic steel plate</td>
<td>279</td>
</tr>
<tr>
<td>6.24</td>
<td>Vibroacoustics measurements: (+) accelerometers and (●) microphones positions</td>
<td>280</td>
</tr>
<tr>
<td>6.25</td>
<td>General mesh dimensions</td>
<td>280</td>
</tr>
<tr>
<td>6.26</td>
<td>General sizes of the mesh</td>
<td>281</td>
</tr>
<tr>
<td>6.27</td>
<td>Detailed mesh around the obstacle</td>
<td>281</td>
</tr>
<tr>
<td>6.28</td>
<td>Contours of the streamwise mean velocity (\bar{U}_1/U_0) near the ruler in the median plane</td>
<td>283</td>
</tr>
<tr>
<td>6.29</td>
<td>Streamwise velocity fluctuations (u'_{\text{rms}}/U_0) near the ruler in the median plane</td>
<td>283</td>
</tr>
<tr>
<td>6.30</td>
<td>Velocity profiles at the origin of the reference: (- – -) measurement; (+ + +) simulation</td>
<td>284</td>
</tr>
<tr>
<td>6.31</td>
<td>Pressure coefficient</td>
<td>285</td>
</tr>
<tr>
<td>6.32</td>
<td>Wall-pressure fluctuation rms levels calculated at various positions along the median plane</td>
<td>285</td>
</tr>
<tr>
<td>6.33</td>
<td>Comparison of calculated (- - -) and measured (+ + +) wall-pressure fluctuation rms levels on the plate</td>
<td>286</td>
</tr>
<tr>
<td>6.34</td>
<td>PSD of wall-pressure fluctuations measured on the flat plate</td>
<td>287</td>
</tr>
<tr>
<td>6.35</td>
<td>Coherence (\gamma^2) of wall-pressure fluctuations measured on the flat plate for streamwise points using the same notation as in Figure 6.34</td>
<td>288</td>
</tr>
<tr>
<td>6.36</td>
<td>Coherence (\gamma^2) of wall-pressure fluctuations measured on the flat plate for spanwise points using the same notation as in Figure 6.34</td>
<td>289</td>
</tr>
<tr>
<td>6.37</td>
<td>Phase velocity (U_p) of wall-pressure fluctuations measured on the flat plate for streamwise points using the same notation as in Figure 6.34</td>
<td>290</td>
</tr>
<tr>
<td>6.38</td>
<td>Acceleration PSD (\Phi_{\text{aa}}) – channel 26</td>
<td>291</td>
</tr>
<tr>
<td>6.39</td>
<td>Acoustic pressure PSD (\Phi_{\text{pp}}) – channel 30 ((P_{\text{ref}} = 2 \times 10^{-5} \text{ Pa})) using the same notation as in Figure 6.38</td>
<td>291</td>
</tr>
<tr>
<td>6.40</td>
<td>First mesh: detailed mesh around the obstacle</td>
<td>292</td>
</tr>
<tr>
<td>6.41</td>
<td>Comparison of the two simulations – wall-pressure fluctuations DSP on the plate</td>
<td>292</td>
</tr>
<tr>
<td>6.42</td>
<td>Comparison of the two simulations – acoustic pressure in cavity using the same notation as in Figure 6.41</td>
<td>293</td>
</tr>
<tr>
<td>6.43</td>
<td>Numerical simulation of airfoil aerodynamic noise: possible hybrid strategies</td>
<td>295</td>
</tr>
<tr>
<td>6.44</td>
<td>Sketch of the computational domains to determine trailing-edge noise with the hybrid approach</td>
<td>297</td>
</tr>
<tr>
<td>6.45</td>
<td>Coordinate system and nomenclature used to determine corrections for a 2D acoustic simulation</td>
<td>301</td>
</tr>
<tr>
<td>6.46</td>
<td>LES subdomain at the trailing edge (left) and horizontal weighting function (right)</td>
<td>304</td>
</tr>
<tr>
<td>6.47</td>
<td>Damping function (</td>
<td>F(\alpha \sigma')</td>
</tr>
<tr>
<td>6.48</td>
<td>LES grid with partially resolved plate and every second grid point shown</td>
<td>305</td>
</tr>
<tr>
<td>6.49</td>
<td>Acoustic grid scaled with the plate length /</td>
<td>306</td>
</tr>
<tr>
<td>6.50</td>
<td>Enlargement of the leading- (left) and trailing-edge region (right)</td>
<td>307</td>
</tr>
<tr>
<td>6.51</td>
<td>Visualization of the instantaneous flow field</td>
<td>307</td>
</tr>
</tbody>
</table>
LIST OF FIGURES AND TABLES xvii

6.52 APE source terms \(\vec{L}' = [\vec{\omega} \times \vec{u}]' = (L'_x, L'_y)^T \) (left), \(L'_y \) (right), and CAA grid 308

6.53 Pressure contours of the trailing-edge problem \(M = 0.15, \ Re = 7 \times 10^5 \) at time level \(T = 3.0 \) with APE solution equations (6.32, 6.33) 309

6.54 Pressure contours of the trailing-edge problem \(M = 0.15, \ Re = 7 \times 10^6 \) at time level \(T = 3.0 \) 310

6.55 Directivity \(\Phi^{1/2}(\theta, r, f) \) with \(\Phi \equiv \) nondimensional power spectral density (PSD) \(\overline{p^2}(\theta, r, f) / (\rho_\infty c_\infty)^2 \), i.e., \(\int_0^\infty \Phi(\theta, r, f) df = \int_0^\infty \overline{p^2}(\theta, r, f) / (\rho_\infty c_\infty)^2 \) 310

6.56 Comparison of the trailing-edge noise directivities \(\Phi^{1/2}(\theta, r, f) \) for \(r = 1.5 \) applying Equations (6.32, 6.33) \((\Phi \equiv \) PSD of \(B^3 \)), Equations (6.43, 6.44) 311

6.57 Sound-pressure level (SPL) versus frequency for a receiving point in \(r = 1.5 \) above the trailing edge for various directions \(\theta \) (see Figure 6.45) 311

6.58 Generation of a periodical source term via window weighting 313

6.59 CAA grid 313

6.60 A harmonic test source over the trailing edge (left) and directivities obtained for \(M = 0, 0.088 \) with LEE and APE (right) applied 314

6.61 APE source term \([\vec{\omega} \times \vec{u}] \) (left) and sound radiation from the trailing edge (right) 315

6.62 Computational grid 319

6.63 Contours of instantaneous Mach-number isovalues 320

6.64 Flow streamlines at the trailing edge: instantaneous (above) and time-averaged (below) 321

6.65 Wall-pressure fluctuations on pressure and suction sides near the TE 322

6.66 Evolution of the wall-pressure PSD along the chord 323

6.67 Evolution of the wall-pressure PSD along the chord 324

6.68 Wave-number–frequency spectrum of wall-pressure fluctuations on the airfoil suction side at \(x/C = 0.9 \) 324

6.69 Wave-number–frequency spectrum of wall-pressure fluctuations on the airfoil suction side at \(x/C = 0.5 \) 325

6.70 Instantaneous isovalues of pressure fluctuations obtained from LES data 326

6.71 Evolution of the wall-pressure spectra along the vertical grid line \(x = C \) (starting from the TE upper corner) with respect to the vertical distance \(z \) 326

6.72 Spanwise evolution of the coherence of the surface-pressure field on the suction side near the TE \((x/C = 0.9958) \). The frequency bandwidths are integrated 327

6.73 Spanwise evolution of the coherence of the pressure field at distance \(z_0 = 37.9 \) mm from the TE at \(x/C = 1 \) 328

6.74 Final problem-adapted acoustic grid 328

6.75 Final problem-adapted acoustic grid (closer view) 330

6.76 Isovalue contours of instantaneous pressure fluctuation field (range \(\pm 2 \) Pa, black and white) computed from (i) LES inside the injection interface and (ii) E3P (from LES data injection) outside the injection interface 331
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.77</td>
<td>Isovalue contours of instantaneous pressure fluctuation field (range ±2 Pa, black and white)</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td>computed from (i) LES inside the injection interface and (ii) E3P (from LES data injection)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>outside the injection interface (closer view)</td>
<td></td>
</tr>
<tr>
<td>6.78</td>
<td>Isovalue contours (range ±3 Pa black and white) of instantaneous pressure fluctuation field</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td>computed from (i) LES data inside the injection interface, (ii) Euler data (from LES data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>injection) between the injection interface and the Kirchhoff control surface, and (iii) from</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kirchhoff integration data beyond the Kirchhoff control surface</td>
<td></td>
</tr>
<tr>
<td>6.79</td>
<td>Numerical mesh (2D plane)</td>
<td>335</td>
</tr>
<tr>
<td>6.80</td>
<td>Sound-pressure level of LES</td>
<td>337</td>
</tr>
<tr>
<td>6.81</td>
<td>Sound-pressure level of 3D URANS</td>
<td>337</td>
</tr>
<tr>
<td>6.82</td>
<td>Experimental setup</td>
<td>338</td>
</tr>
<tr>
<td>6.83</td>
<td>Instantaneous streamlines in 2D URANS simulation</td>
<td>339</td>
</tr>
<tr>
<td>6.84</td>
<td>Instantaneous streamlines in LES with adaptive model</td>
<td>340</td>
</tr>
<tr>
<td>6.85</td>
<td>Lift and drag coefficients of the cylinder in the third-finest grid</td>
<td>340</td>
</tr>
<tr>
<td>6.86</td>
<td>Lift and drag coefficients of the cylinder in the second-finest grid</td>
<td>341</td>
</tr>
<tr>
<td>6.87</td>
<td>Lift and drag coefficients of the cylinder in the finest grid</td>
<td>341</td>
</tr>
<tr>
<td>6.88</td>
<td>Acoustic density fluctuations of 2D URANS simulation in the finest grid</td>
<td>341</td>
</tr>
<tr>
<td>6.89</td>
<td>Sound-pressure level of 2D URANS simulation in finest grid</td>
<td>342</td>
</tr>
<tr>
<td>6.90</td>
<td>Acoustic density fluctuations of LES with adaptive model in second-finest grid</td>
<td>342</td>
</tr>
<tr>
<td>6.91</td>
<td>Sound-pressure level of LES with adaptive model in second-finest grid</td>
<td>343</td>
</tr>
<tr>
<td>6.92</td>
<td>Acoustic density fluctuations of 3D LES simulation in finest grid</td>
<td>343</td>
</tr>
<tr>
<td>6.93</td>
<td>Sound pressure level of LES with adaptive model in finest grid</td>
<td>343</td>
</tr>
<tr>
<td>6.94</td>
<td>Sound pressure level of LES in finest grid with Smagorinsky and Lilley model</td>
<td>344</td>
</tr>
<tr>
<td>6.95</td>
<td>The Ahmed body from Ahmed et al. (1984) (isosurface of zero streamwise velocity from Kapadia</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>et al. (2003)</td>
<td></td>
</tr>
<tr>
<td>6.96</td>
<td>Mesh for the CFD model from Volkswagen</td>
<td>346</td>
</tr>
<tr>
<td>6.97</td>
<td>Streamlines in the wake of the CFD model</td>
<td>347</td>
</tr>
<tr>
<td>6.98</td>
<td>Vorticity in the wake of the CFD model</td>
<td>347</td>
</tr>
<tr>
<td>6.99</td>
<td>Pressure coefficient in the symmetry plane of the CFD model</td>
<td>348</td>
</tr>
<tr>
<td>6.100</td>
<td>Sound-pressure level at an observer point of $x = 10$ m, $y = 10$ m, and $z = 1$ m</td>
<td>348</td>
</tr>
<tr>
<td>6.101</td>
<td>Aerodynamic computational domain</td>
<td>351</td>
</tr>
<tr>
<td>6.102</td>
<td>Acoustic computational domain</td>
<td>351</td>
</tr>
<tr>
<td>6.103</td>
<td>LES velocity field; longitudinal component ($U = 14$ ms$^{-1}$, $t = 6.6 \times 10^{-2}$ s)</td>
<td>352</td>
</tr>
<tr>
<td>6.104</td>
<td>Acoustic results: acoustic power radiated by the diaphragm with respect to the mean velocity</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>(top) and acoustic power spectrum for $U = 14$ ms$^{-1}$ (bottom)</td>
<td></td>
</tr>
<tr>
<td>6.105</td>
<td>Geometry of the cavity duct system</td>
<td>353</td>
</tr>
<tr>
<td>6.106</td>
<td>Snapshots of the pressure in the duct (left) and the vorticity in the cavity (right) during</td>
<td>354</td>
</tr>
<tr>
<td></td>
<td>a period of the oscillation</td>
<td></td>
</tr>
<tr>
<td>6.107</td>
<td>Geometry of the sudden enlargement</td>
<td>355</td>
</tr>
<tr>
<td>6.108</td>
<td>Snapshots of the Mach number for $\tau_1 = 5.5$</td>
<td>355</td>
</tr>
<tr>
<td>6.109</td>
<td>Snapshots of the Mach number for $\tau_2 = 2.65$</td>
<td>356</td>
</tr>
<tr>
<td>6.110</td>
<td>Opel 2004 Astra</td>
<td>360</td>
</tr>
</tbody>
</table>
LIST OF FIGURES AND TABLES

6.111 Lilley turbulence shear-source distribution illustrated by isosurfaces for the idealized wing-mirror example of Siegert et al. (1999) 361
6.112 Mesh frequency cutoff (MFC) estimate; idealized wing-mirror example of Siegert et al. (1999) 362
6.113 Predicted versus measured pressure spectra; idealized wing-mirror example of Siegert et al. (1999) 363
6.114 Mach 0.85 cavity: symmetry-plane snapshot at $t = 0.3$ s; DES/k–ε (top) and URANS/k–ε (bottom) 365
6.115 Overall (a) and band-limited (b) P_{rms} along cavity ceiling centerline 366
6.116 PSD (kPa²/Hz) at location $x/L = 0.45$ 367
6.117 Diesel injector primary liquid spray breakup; liquid-free surface with synthetic inlet perturbation (top) and without inlet perturbation (bottom) 367
6.118 Audi A2 full-vehicle geometry with localized domain shown in dark 368
6.119 Instantaneous velocity magnitude field 368
6.120 SPL against frequency at Microphone 4 369
6.121 Experimental (top) and simulated (bottom) pressure trace to 0.3 s at $x/L = 0.95$ 369
6.122 Sampling effects on overall P_{rms} (kPa) along the cavity ceiling for M219 experimental data 370
6.123 Sampling effects on overall P_{rms} (kPa) along the cavity ceiling for CFD data 370
6.124 Resonator geometry: application challenge from BEHR GmbH in the DESTINY-AAC project 372
6.125 Velocity contours (top), pressure–time traces (bottom left), and spectral magnitude (bottom right) at three bulk velocities (4, 8, and 12 m/s) taken at the neck of the resonator 373
6.126 Acoustic response for 8 m/s case at the microphone 374
6.127 Experimental prototype with inlet cylinder and outlet filter removed and locations of far-field monitors 374
6.128 Comparison of steady-state RANS and snapshots from the DES calculation 375
6.129 Surface acoustic pressure (Pa) on the exterior model (a) and acoustic pressure in the far-field (b) 375
6.130 Computed and measured dB(A) levels at the nine microphone locations at the blade-passing frequency (BPF) 376

Tables

1.1 Sound-pressure levels for common sounds 2
3.1 Examples of usual spatial convolution filters 94
3.2 Various decompositions for the nonlinear terms 97
3.3 Resolution requirements referred to Kolmogorov length scale η used in DNS based on spectral methods of some incompressible homogeneous and wall-bounded flows 105
3.4 Typical mesh size (expressed in wall units) for DNS and LES of boundary layer flow 107
3.5 Definition of simulation types for compressible flows 109
3.6 Modified wave-number analysis of some classical centered finite difference schemes 109
<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Coefficients for the DRP scheme of Equation (5.27)</td>
<td>174</td>
</tr>
<tr>
<td>5.2</td>
<td>Coefficients for filter formula 5.72</td>
<td>188</td>
</tr>
<tr>
<td>5.3</td>
<td>Optimized coefficients of the amplification factor for the LDDRK schemes</td>
<td>200</td>
</tr>
<tr>
<td>5.4</td>
<td>Typical mesh sizes (expressed in wall units) for a boundary layer flow using DNS, wall-resolved LES, and LES with an appropriate wall model</td>
<td>209</td>
</tr>
<tr>
<td>6.1</td>
<td>LES of a $Re_D = 4 \times 10^5$ subsonic jet. Sideline sound levels and ν_{ms}-maxima in the shear layer for the different simulations</td>
<td>244</td>
</tr>
</tbody>
</table>
Contributors

Jean-Marc Auger
PSA Peugeot Citroën
1 route de Gisy
F-78943 Vélizy-Villacoublay Cedex
FRANCE
e-mail: jeanmarc.auger@mpsa.com

Dr. Christophe Bailly
Centre Acoustique LMFA & UMR CNRS
36, avenue Guy de Collongue
F-69134 Ecully
FRANCE
e-mail: christophe.bailly@ec-lyon.fr

Dr. Paul Batten
Metacomp Technologies, Inc.
28632-B Roadside Drive Suite 255
Agoura Hills, CA 91301
USA
e-mail: batten@metacomptech.com

Dr. Daniel J. Bodony
Stanford University
Department of Aeronautics and Astronautics
Stanford, CA 94305-4035
USA
e-mail: bodony@stanford.edu

Dr. Christophe Bogey
Centre Acoustique LMFA & UMR CNRS
36, avenue Guy de Collongue
F-69134 Ecully
FRANCE
e-mail: christophe.bogey@ec-lyon.fr

Priv.-Doz. Dr.-Ing. Michael Breuer
Lehrstuhl für Strömungsmechanik (LSTM)
Universität Erlangen-Nürnberg
Cauerstr. 4
D-91058 Erlangen
GERMANY
e-mail: breuer@lstm.uni-erlangen.de

Ir. Tim Broeckhoven
Vrije Universiteit Brussel Department of Mechanical Engineering Fluid Mechanics and Thermodynamics Research Group
Pleinlaan 2
B-1050 Brussels
BELGIUM
e-mail: tim@stro.vub.ac.be
Contributors

Fabien Crouzet
Electricité de France
Analysis in Mechanics and Acoustics
Department
1 avenue du General de Gaulle
F-92141 Clamart Cedex
FRANCE
e-mail: Fabien.Crouzet@edf.fr

Jean Paul Devos
Electricité de France
Analysis in Mechanics and Acoustics
Department
1 avenue du General de Gaulle
F-92141 Clamart Cedex
FRANCE
e-mail: Jean-Paul.devos@edf.fr

Dr. Ing. Roland Ewert
DLR Institute of Aerodynamics and Flow Technology
Technical Acoustics
Lilienthalplatz 7
D-38108 Braunschweig
GERMANY
e-mail: roland.ewert@dlr.de

Oliver Fleig
The University of Tokyo
Graduate School of Engineering
Department of Mechanical Engineering
7-3-1 Hongo, Bunkyo-Ku
Tokyo 113-8656
JAPAN
e-mail: oliverfleig@hotmail.com

Xavier Gloerfelt
Laboratoire SINUMEF
ENSAM (Ecole Nationale Supérieure d’Arts et Métiers)
151, boulevard de l’Hôpital
F-75013 Paris
FRANCE
e-mail: Xavier.Gloerfelt@paris.ensam.fr

Prof. Dr. Ir. Avraham Hirschberg
Faculteit Technische Natuurkunde
Technische Universiteit Eindhoven
CC 2.24, Postbus 513
NL-5600 MB Eindhoven
THE NETHERLANDS
e-mail: a.hirschberg@tue.nl

Prof. Fang Q. Hu
Department of Mathematics and Statistics
Old Dominion University
Norfolk, VA 23529
USA
e-mail: fhu@odu.edu

Dr. Thomas Hüttl
MTU Aero Engines GmbH
Dachauer Str. 665
D-80995 München
GERMANY
e-mail: Thomas.Huettl@muc.mtu.de

André Jacques
Mcube
54, Rue Montgrand - BP 232
F-13178 Marseille Cedex 20
FRANCE
e-mail: andre@mcube.fr

Prof. Dr. Ir. Chris Lacor
Vrije Universiteit Brussel
Department of Mechanical Engineering
Fluid Mechanics and Thermodynamics
Research Group
Pleinlaan 2
B-1050 Brussels
BELGIUM
e-mail: chris.lacor@vub.ac.be

Philippe Lafon
Laboratoire de Mecanique des Structures Industrielles Durables (LaMSID)
UMR CNRS EDF 2832
1 avenue du General de Gaulle
F-92141 Clamart Cedex
FRANCE
e-mail: Philippe.Lafon@edf.fr
CONTRIBUTORS

Sanjiva K. Lele
Stanford University
Department of Aeronautics and
Astronautics & Department of
Mechanical Engineering
Stanford, CA 94305-4035
USA
e-mail: lele@Stanford.edu

Dr. Ing. Franco Magagnato
Fachgebiet Strömungsmaschinen
Universität Karlsruhe (TH)
Kaiserstrasse 12
D-76128 Karlsruhe
GERMANY
e-mail: magagnato@mach.uni-karlsruhe.de

Eric Manoha
ONERA/DSNA/BREC
BP 72
F-92322 Chatillon Cedex
FRANCE
e-mail: eric.manoha@onera.fr

Fred G. Mendonça
CDadapco
CFD Engineering Services Manager,
London
CD adapco Group, UK
200 Shepherds Bush Road
London W6 7NY
ENGLAND
e-mail: fred@uk.cd-adapco.com

Dimitri Nicolopoulos
Mcube
54, Rue Montgrand - BP 232
F-13178 Marseille Cedex 20
FRANCE
e-mail: dimitri@mcube.fr

Fred Péria
Mcube
54, Rue Montgrand - BP 232
F-13178 Marseille Cedex 20
FRANCE
e-mail: fred@mcube.fr

Ir. Jan Ramboer
Vrije Universiteit Brussel
Department of Mechanical Engineering
Fluid Mechanics and Thermodynamics
Research Group
Pleinlaan 2
B-1050 Brussels
BELGIUM
e-mail: jan@stro.vub.ac.be

Dr. Sjoerd W. Rienstra
Department of Mathematics
and Computer Science
Eindhoven University of Technology
P.O. Box 513
NL-5600 MB Eindhoven
THE NETHERLANDS
e-mail: S.W.Rienstra@tue.nl

Prof. Pierre Sagaut
LMM - UPMC/CNRS
Laboratoire de modélisation en mécanique
Université Pierre et Marie Curie
Boîte 162, 4 place Jussieu
F-75252 Paris Cedex 05
FRANCE
e-mail: sagaut@lmm.jussieu.fr

Univ.-Prof. Dr.-Ing. Wolfgang Schröder
Lehrstuhl für Strömungslehre und
Aerodynamisches Institut
RWTH Aachen
Wüllinstr. zw. 5 u. 7
D-52062 Aachen
GERMANY
e-mail: office@iaa.rwth-aachen.de

Ir. Sergey Smirnov
Vrije Universiteit Brussel
Department of Mechanical Engineering
Fluid Mechanics and Thermodynamics
Research Group
Pleinlaan 2
B-1050 Brussels
BELGIUM
e-mail: serg@stro.vub.ac.be

Philippe Spalart
Boeing Commercial Airplanes
P.O. Box 3707
Seattle, WA 98124-2207
USA
e-mail: Philippe.r.spalart@boeing.com
Marc Terracol
ONERA
29 avenue de la Division Leclerc
F-92320 Chatillon
FRANCE
e-mail: marc.terracol@onera.fr

Sandrine Vergne
PSA Peugeot Citroën
2 route de Gisy
F-78943 Vélizy-Villacoublay Cedex
FRANCE
e-mail: sandrine.vergne@mpsa.com

Dr. Claus Wagner
Deutsches Zentrum für Luft- und Raumfahrt e.V., DLR
Institut für Aerodynamik und Strömungstechnik
Abt. Technische Strömungen
Bunsenstraße 10
D-37073 Göttingen
GERMANY
e-mail: Claus.Wagner@dlr.de
Preface

Two branches of the same tree are growing together: Acoustics and the large-eddy simulation (LES) technique are based on the same fundamental equations of fluid dynamics. In the past, both scientific disciplines developed independently from each other. Acoustics is one of the classical disciplines of mechanics, having its roots in Greek and Roman times. LES is a comparatively young field of research that has benefited from the exponential growth in computational possibilities over the last few decades. Each scientific community has developed its own methods, definitions, and conventions, and it sometimes seems that experts and scientists in acoustics and LES techniques speak different languages. During the last few years, the LES and the acoustics communities realized that LES can be a comprehensive tool for acoustical research and design and intensified its use.

This book presents the current state of the art for LES used in acoustical investigations and comprises 19 contributions from 30 authors, each an expert in his field of research. A general introduction to the subject is followed by descriptions of the theoretical background of acoustics and of LES. A chapter on hybrid RANS–LES for acoustic source predictions follows. More details are given for numerical methods, such as discretization schemes, boundary conditions, and coupling aspects. Numerous applications are discussed ranging from simple geometries for mixing layers and jet flows to complex wing or car geometries. The selected applications deal with recent scientific investigations at universities and research institutes as well as applied studies at industrial companies. Side areas of LES for acoustics are addressed in a contribution on vibroacoustics.

The book is a collection of different methods, tools, and evaluation methodologies. Currently it is not possible to offer a perfect solution methodology that generally covers all possible applications. Although interesting results of several commercial codes are presented, a recommendation for any specific solver cannot be made because a benchmark of the codes has not been established and several other codes have not been considered yet. Each method, both scientific and commercial, has its individual advantages and weaknesses. It was also not our intention to harmonize the definitions.
The book is intended to be used by students, researchers, engineers, and code developers willing to become more familiar with the use of the LES technique for acoustical studies. The limitations of the method have been outlined as well as its requirements. The reader should acquire an impression of possible and appropriate applications for this methodology. The editors would welcome any initiatives motivated by this book for international cooperation in the development or application of LES for acoustics.

The idea for this book came from Eric Willner, the former commissioning editor for engineering at Cambridge University Press, when he read the first call for papers for the International Workshop on LES for Acoustics organized by Thomas Hüttl, Claus Wagner, and Jan Delfs in Göttingen, 2002. At this time, Cambridge University Press was actively seeking a book on LES for acoustics for its aerospace series. Thomas Hüttl and Claus Wagner agreed to edit a scientific book based on the contributions of the workshop in Göttingen. Several speakers and participants of the workshop and other experts promised to contribute to the book, which was conceived as more of a scientific handbook than a simple workshop proceedings. Pierre Sagaut separately developed the idea of a book on LES for acoustics and joined the team of editors.

The book would not exist without the contributions from each of the authors. The editors are not only grateful for these contributions but also for valuable review comments from several authors during two book reviews as well as interesting scientific discussions of review comments and proposals. We would also like to thank Peter Gordon, Senior Editor of Engineering at Cambridge University Press, for his help in preparing the book but also for enthusiasm, patience, and confidence during the last 2 years when the progress of the book was sometimes slow but never stopped.

Thomas Hüttl gratefully acknowledges the advice and comments of MTU Aero Engines aeroacoustics specialist Fritz Kenneppohl, who introduced him to the secrets of acoustics during the TurboNoiseCFD research project.

Pierre Sagaut, Thomas Hüttl, and Claus Wagner
Europe, May 2006

* International ERCOFTAC-DGLR-DLR-Workshop on LES for Acoustics organized by T. Hüttl, C. Wagner and J. Delfs, German Aerospace Center (DLR), Göttingen, Germany, 7–8 October 2002.
LARGE-EDDY SIMULATION FOR ACOUSTICS