Contents

List of Contributors ix
Preface xv

Section 1 Principles of cognitive neurorehabilitation 1

Introduction to Section 1 3
1. Principles of neuroplasticity and behavior
 Bryan Kolb and Robbin Gibb 6
2. Principles of compensation in cognitive neuroscience and neurorehabilitation
 Roger A. Dixon, Douglas D. Garrett and Lars Backman 22
3. The patient as a moving target: the importance to rehabilitation of understanding variability
 Donald T. Stuss and Malcolm A. Binns 39
4. Hormones and allostasis in brain disease and repair
 Richard G. Hunter and Bruce S. McEwen 62
5. Principles in conducting rehabilitation research
 Amy D. Rodriguez and Leslie J. Gonzalez Rothi 79
6. Outcome measurement in cognitive neurorehabilitation
 Nadina Lincoln and Roshan das Nair 91
7. Principles in evaluating cognitive rehabilitation research
 Keith D. Cicerone 106
Contents

Section 2 Application of imaging technologies 119
Introduction to Section 2 121
8. Structural neuroimaging: defining the cerebral context for cognitive rehabilitation
 Joel Ramirez, Fu Qiang Gao and Sandra E. Black 124
9. Functional neuroimaging and cognitive rehabilitation: healthy aging as a model of plasticity
 Cheryl L. Grady 149
10. Functional brain imaging and neurological recovery
 Maurizio Corbetta 162
11. The role of neuroelectric and neuromagnetic recordings in assessing learning and rehabilitation effects
 Claude Alain and Bernhard Ross 182

Section 3 Factors affecting successful outcome 201
Introduction to Section 3 203
12. Mood, affect and motivation in rehabilitation
 Omar Ghaffar and Anthony Feinstein 205
13. Anosognosia and the process and outcome of neurorehabilitation
 George P. Prigatano 218
14. Psychosocial considerations in cognitive rehabilitation
 Deirdre R. Dawson and Gordon Winocur 232
15. Exercise, cognition and dementia
 Erik Scherder and Laura Eggermont 250
16. Is there a role for diet in cognitive rehabilitation?
 Matthew Parrott and Carol Greenwood 272

Section 4 Pharmacologic and biological approaches 293
Introduction to Section 4 295
17. Pharmacologic approaches to cognitive rehabilitation
 Thomas W. McAllister and Amy F. T. Arnsten 298
18. Pharmacologic treatment of cognitive impairment after traumatic brain injury
 John Whyte 321
19. Pharmacologic interventions for cognition in dementia
 John M. Ringman and Jeffrey L. Cummings 334
20. Neurogenesis-based regeneration and cognitive therapy in the adult brain. Is it feasible?
 J. Martin Wojtowicz 348
21. The impact of cerebral small vessel disease on cognitive impairment and rehabilitation
 Harry V. Vinters and S. Thomas Carmichael 360
22. Intrinsic and extrinsic neural stem cell treatment of central nervous system injury and disease
 Trudi Stickland, Samuel Weiss and Bryan Kolb 376

Section 5 Behavioral/neuropsychological approaches 395
Introduction to Section 5 397
23. The use of constraint-induced movement therapy (CI therapy) to promote motor recovery following stroke
 David M. Morris and Edward Taub 401
24. Effects of physical activity on cognition and brain
 Arthur F. Kramer, Kirk I. Erickson and Edward McAuley 417
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Aphasia</td>
<td>Susan A. Leon, Stephen E. Nadeau, Michael</td>
<td>435</td>
</tr>
<tr>
<td></td>
<td></td>
<td>deRiesthal, Bruce Crosson, John C. Rosenbek</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and Leslie J. Gonzalez Rothi</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Rehabilitation of neglect</td>
<td>Victoria Singh-Curry and Masud Husain</td>
<td>449</td>
</tr>
<tr>
<td>27</td>
<td>Rehabilitation of frontal lobe functions</td>
<td>Brian Levine, Gary R. Turner and</td>
<td>464</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Donald T. Stuss</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Executive functioning in children with traumatic brain injury in comparison to developmental ADHD</td>
<td>Gerri Hanten and Harvey S. Levin</td>
<td>487</td>
</tr>
<tr>
<td>29</td>
<td>Rehabilitation of attention following traumatic brain injury</td>
<td>Jennie Ponsford</td>
<td>507</td>
</tr>
<tr>
<td>30</td>
<td>Memory rehabilitation for people with brain injury</td>
<td>Barbara A. Wilson and Narinder Kapur</td>
<td>522</td>
</tr>
<tr>
<td>31</td>
<td>Memory rehabilitation in older adults</td>
<td>Elizabeth L. Glisky and Martha L. Glisky</td>
<td>541</td>
</tr>
</tbody>
</table>

Section 6 Overview

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>The future of cognitive neurorehabilitation</td>
</tr>
<tr>
<td></td>
<td>Ian H. Robertson and Susan M. Fitzpatrick</td>
</tr>
</tbody>
</table>

Index 575

The plates are to be found between pages 78 and 79.
Contributors

Claude Alain
Rotman Research Institute at Baycrest,
University of Toronto,
Toronto, ON, Canada

Amy F. T. Arnsten
Department of Neurobiology,
Yale University School of Medicine,
New Haven, CT, USA

Lars Bäckman
Karolinska Institute,
Stockholm, Sweden

Malcolm A. Binns
Rotman Research Institute at Baycrest,
Toronto, ON, Canada

Sandra E. Black
Heart and Stroke Foundation Centre for Stroke Recovery
LC Campbell Cognitive Neurology Research Unit
Sunnybrook Research Institute
Rotman Research Institute at Baycrest
Division of Neurology, Department of Medicine,
Sunnybrook Health Sciences Centre,
University of Toronto,
Toronto, ON, Canada
Contributors

S. Thomas Carmichael
Program in Neurorehabilitation and Neural Repair,
Department of Neurology,
David Geffen School of Medicine,
University of California,
Los Angeles, CA, USA

Keith D. Cicerone
Department of Neuropsychology,
JFK Johnson Rehabilitation Institute,
Edison, NJ, USA

Maurizio Corbetta
Department of Neurology, Radiology, Anatomy and
Neurobiology,
Washington University School of Medicine,
St. Louis, MO, USA

Bruce Crosson
VA RR&D Brain Rehabilitation Research Center, and
Department of Clinical and Health Psychology,
University of Florida Health Science Center,
Gainesville, FL, USA

Laura Eggermont
Department of Clinical Neuropsychology,
Vrije Universiteit Amsterdam,
Amsterdam, The Netherlands

Kirk I. Erickson
Beckman Institute for Advanced Science and Technology,
University of Illinois,
Urbana, IL, USA

Anthony Feinstein
Neuropsychiatry Program,
Sunnybrook Health Sciences Centre,
University of Toronto,
Toronto, ON, Canada

Susan M. Fitzpatrick
James S. McDonnell Foundation,
St. Louis, MO, USA

Fu Qiang Gao
Heart and Stroke Foundation Centre for Stroke Recovery,
LC Campbell Cognitive Neurology Research Unit,
Sunnybrook Health Sciences Centre,
Toronto, ON, Canada

Douglas D. Garrett
Rotman Research Institute at Baycrest,
Department of Psychology,
University of Toronto,
Toronto, ON, Canada

Omar Ghaffar
Neuropsychiatry Program,
Department of Psychiatry,
Sunnybrook Health Sciences Centre,
University of Toronto,
Toronto, ON, Canada

Robbin Gibb
Department of Neuroscience,
Canadian Centre for Behavioral Neuroscience,
University of Lethbridge,
Lethbridge, AB, Canada

Roger A. Dixon
Department of Psychology,
University of Alberta,
Edmonton, AB, Canada
Contributors

Elizabeth L. Glisky
Department of Psychology,
University of Arizona,
Tucson, AZ, USA

Martha L. Glisky
Evergreen Hospital Medical Center,
Kirkland, WA, USA

Leslie J. Gonzalez Rothi
VA Brain Rehabilitation Research Center,
Gainesville, FL, USA

Cheryl L. Grady
Rotman Research Institute at Baycrest,
Departments of Psychiatry and Psychology,
University of Toronto,
Toronto, ON, Canada

Carol Greenwood
Kunin-Lunenfeld Applied Research Unit at Baycrest,
University of Toronto,
Toronto, ON, Canada

Gerri Hanten
Department of Physical Medicine and Rehabilitation,
Baylor College of Medicine,
Houston, TX, USA

Richard G. Hunter
Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology,
The Rockefeller University,
New York, NY, USA

Masud Husain
Institute of Neurology and Institute of Cognitive Neuroscience,
University College London,
London, UK

Narinder Kapur
Addenbrooke’s Hospital,
Cambridge, UK

Bryan Kolb
Canadian Centre for Behavioral Neuroscience,
University of Lethbridge,
Lethbridge, AB, Canada

Arthur F. Kramer
Beckman Institute for Advanced Science and Technology,
University of Illinois,
Urbana, IL, USA

Susan A. Leon
VA Brain Rehabilitation Research Center,
Gainesville, FL, USA

Harvey S. Levin
Department of Physical Medicine and Rehabilitation,
Baylor College of Medicine,
Houston, TX, USA

Brian Levine
Rotman Research Institute at Baycrest,
University of Toronto,
Toronto, ON, Canada

Nadina Lincoln
Institute of Work Health and Organisations, University of Nottingham,
Nottingham, UK

Thomas W. McAllister
Department of Psychiatry,
Dartmouth-Hitchcock Medical Center,
Lebanon, NH, USA

Edward McAuley
Department of Kinesiology and Community Health
University of Illinois
Urbana, IL
USA

Bruce S. McEwen
Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology,
The Rockefeller University,
New York, NY, USA
Contributors

David M. Morris
Department of Physical Therapy,
University of Alabama at Birmingham,
Birmingham, AL, USA

Stephen E. Nadeau
Brain Rehabilitation Research Center,
Malcolm Randall DVA Medical Center,
Gainesville, FL, USA

Roshan das Nair
School of Psychology,
University of Nottingham,
Nottingham, UK

Matthew Parrott
Kunin-Lunenfeld Applied Research Unit,
Baycrest,
Toronto, ON, Canada

Jennie Ponsford
School of Psychology, Psychiatry and
Psychological Medicine,
Monash University,
Clayton, Victoria, Australia

George P. Prigatano
Barrow Neurological Institute,
St. Joseph’s Hospital – CHW,
Phoenix, AZ, USA

Joel Ramirez
LC Campbell Cognitive Neurology Research Unit,
Sunnybrook Health Sciences Centre,
Toronto, ON, Canada

John M. Ringman
UCLA Alzheimer’s Disease Center,
University of California,
Los Angeles, CA, USA

Ian H. Robertson
Trinity College Institute of Neuroscience, and
School of Psychology,
Trinity College Dublin, Ireland

Amy D. Rodriguez
Department of Communicative Disorders,
University of Florida,
Gainesville, FL, USA

John C. Rosenbek
Department of Communicative Disorders,
University of Florida,
Gainesville, FL, USA

Bernhard Ross
Rotman Research Institute at Baycrest,
University of Toronto,
Toronto, ON, Canada

Erik Scherder
Department of Clinical Neuropsychology,
Vrije Universiteit Amsterdam, and
Institute of Human Movement Sciences,
Rijksuniversiteit Groningen, The Netherlands

Victoria Singh-Curry
Institute of Neurology and Institute of Cognitive Neuroscience,
University College London,
London, UK

Trudi Stickland
Hotchkiss Brain Institute,
Faculty of Medicine,
University of Calgary,
Calgary, AB, Canada

Donald T. Stuss
Rotman Research Institute at Baycrest,
University of Toronto,
Toronto, ON, Canada

Edward Taub
Department of Psychology,
University of Alabama at Birmingham,
Birmingham, AL, USA

Gary R. Turner
Rotman Research Institute at Baycrest,
Toronto, ON, Canada
Contributors

Harry V. Vinters
Department of Pathology and Laboratory Medicine (Neuropathology), UCLA Medical Center, University of California, Los Angeles, CA, USA

Samuel Weiss
Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada

John Whyte
Moss Rehabilitation Research Institute, Elkins Park, PA, and Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA, USA

Barbara A. Wilson
MRC Cognition and Brain Sciences Unit, Cambridge, UK

Gordon Winocur
Rotman Research Institute at Baycrest, University of Toronto, Toronto, ON, Canada

J. Martin Wojtowicz
Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
Preface

The field of cognitive neurorehabilitation has advanced notably in several ways since the publication, in 1999, of the first edition of *Cognitive Neurorehabilitation: A Comprehensive Approach*. The science has improved. This is particularly evident in the methods of treatment; in understanding the different factors that might affect successful outcome; in the expanded use of neuroimaging modalities to understand the limitations and benefits of neurorehabilitation; and in the understanding of the potential pathophysiological mechanisms in different patient groups that are key to the development of new procedures. Our overall objective in editing this new and expanded volume remains in essence the same as the first: summarize the latest developments in cognitive neuroscience research related to cognitive neurorehabilitation; review the principles that form the platform of successful interventions; and synthesize new findings about the rehabilitation of cognitive changes in different populations.

Cognitive Neurorehabilitation, Second Edition: Evidence and Application provides understanding of why cognitive neurorehabilitation may or may not work; *how* to use different neuroimaging methods to evaluate the efficacy of interventions; *what* personal and external factors impact rehabilitation success; *how* biological and psychopharmacologic changes can be understood and treated; *how to* treat different disorders such as language and memory; and *where* the field is going in research and clinical application.

Cognitive Neurorehabilitation, Second Edition: Evidence and Application is intended to be a comprehensive reference volume for those interested in the
scientific base of cognitive neurorehabilitation, and will include the most up-to-date information for the practicing clinician. The book is an expanded edition, with five major sections compared with four in the first edition, and 32 chapters compared with 22 in the first. More importantly, as reflected in the title, this is a totally new volume, not just a “second” edition. The content is much more comprehensive in scope, containing information not present in the first edition. Chapters that were present in the first edition have been significantly updated to reflect current knowledge. For example, there are state-of-the-art reviews of the principles underlying successful neurorehabilitation, the methods and value of neuroimaging, and new neurorehabilitation procedures. Some important chapters in the first edition on clinical programs and services were not included in the second edition because of our desire to emphasize the neuroscience underpinnings of neurorehabilitation.

The volume consists of six Parts, each organized and prefaced by its section editor(s): (I) Principles of cognitive neurorehabilitation, extending from the basics of neuroplasticity to principles of compensation, incorporating all levels of evidence currently available; (II) Application of imaging technologies, an overview of the use of structural and functional neuroimaging procedures including MRI, ERPs and MEG; (III) Factors affecting successful outcome, with chapters discussing the impact of internal and external factors including mood, self-awareness, exercise and diet; (IV) Pharmacologic and biological approaches, covering the rationale for pharmacologic strategies as well as practical examples related to different disorders, and current advances in promoting neural regeneration and stem cell research; (V) Behavioral/neuropsychological approaches, summarising the strengths and weaknesses of therapies targeting motor and various types of cognitive disorders (e.g., attention, aphasia, neglect, “executive”, memory); and (VI) an Overview, evaluating the current status of rehabilitation through the lens of neuroscience research, and suggesting the future of cognitive rehabilitation.

This second edition maintains positive features of the first edition, including summary bullet points throughout the chapters; the scientific emphasis; the content organization. Within each chapter, there are highlights of different sections to provide the reader, especially students, with key summaries of the content. The topics broadly cover subject matter important to cognitive rehabilitation, from basic anatomy and chemistry, to rehabilitative methods, to consideration of psychosocial factors. The overall organization of the book and the structure of each chapter were designed so that the volume would also be a suitable textbook at the graduate level. The book is not, however, a practical “cookbook” of what to do for different neurorehabilitation healthcare professionals.

There are also many new features. We have added chapters that reflect the changes in knowledge, thinking and approaches in the last decade. We have included information not presented in other neurorehabilitation books: e.g., variability of performance; mechanisms underlying success and failure in rehabilitation of executive dysfunction; the role of neurogenesis in brain recovery; the potential of stem cell research. We have added color figures which should highlight in a striking visual manner the most important information, especially in neuroimaging.

We tried to reach four primary audiences (reflected in the type of contributors).

(a) Healthcare professionals actively involved in rehabilitation. This includes clinical psychologists, neuropsychologists, occupational therapists and to some degree physiotherapists. For this group, our goal was to provide a reference for clinicians to evaluate the scientific basis of treatment.

(b) Rehabilitation physicians actively involved in cognitive neurorehabilitation. Neurologists, phsyiatrists and psychiatrists will find the information important in guiding their referrals, and in evaluating the quality of service provided.

(c) Students. For all graduate programs interested in the scientific basis of cognitive rehabilitation, the information in this second edition should be indispensable. Although there is value for undergraduate courses, the book was geared to a higher level.

(d) Researchers in rehabilitation. Our goal was to provide scientific information to help
researchers in cognitive rehabilitation gain new background information and insights. We also hope that the book will serve as a creative ferment to stimulate new research. And, finally, we hope to convince cognitive neuroscientists that, indeed, there is “science” in cognitive neurorehabilitation.

A secondary market goal was that some of the information provided would be of interest and value to healthcare workers involved in neurorehabilitation, but not necessarily in the front lines of research or clinical care (e.g., social workers, hospital administrators). Such professionals play a critical role in all aspects of rehabilitation medicine and contribute significantly to the process of knowledge transfer.

We hope that we have to some degree achieved our stated objectives, and that this volume will directly or indirectly improve the lives of those whom we try to help through cognitive neurorehabilitation. We thank all the authors who contributed to this second edition.

Particular thanks go to Susan Gillingham, who did all the organisation work. Without Susan, Cognitive Neurorehabilitation, Second Edition: Evidence and Application would not have come to fruition.

We are pleased to dedicate this second edition of Cognitive Neurorehabilitation to the many patients who have given their time and effort to participate in the many research projects that have advanced the science, in the hope that maximum benefit may come to similar individuals in the future.

Donald T. Stuss,
Gordon Winocur and
Ian H. Robertson