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Introduction

For more than a century, scientists and engineers have used the interference of
light waves to assess the optical properties of an object (Lauterborn et al., 1993;
Monnier, 2003; Saha, 2002). A well-known example of an optical interference
pattern is Newton’s rings, where light waves reflecting from two closely spaced
surfaces interfere to form a ring pattern as shown in Figure 1.1.

The intensity pattern |D(A)|2 is known as an interferogram, where D(A)

describes the brightness field at a location A on the top of the lens surface. The inter-
ferogram characterizes the interference between the upgoing reflections from the
bottom of the lens at B and from the glass pane at C. Dark rings correspond to
zones where the reflections with raypaths ABA and ACA are out of phase result-
ing in destructive interference, while the bright rings correspond to the in-phase
reflections that give rise to constructive interference. The phase is controlled by
the lens thickness, which thickens toward the center, so that any departures from
perfect circular rings indicate subtle variations from an ideal lens geometry. As an
example, Figure 1.2 shows an interferogram that reveals micron-sized imperfec-
tions in a cut diamond, where micron-deep pits show up as triangular interference
patterns.

1.1 Seismic interferometry

Analogous to optical interferometry, seismic interferometry estimates the detailed
properties of the Earth by analyzing the interference patterns of seismic waves.
These patterns are constructed by correlating and summing pairs of seismic traces
with one another to robustly image the Earth’s elastic properties. As an exam-
ple, consider the Figure 1.3a Earth model where single-channel seismic traces are
recorded over a sand lens underlying a complex overburden. There are two events
in each seismogram, the early one is the upgoing reflection from the top of the
sand lens and the later one is the reflection from the bottom of the sand lens. The
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Fig. 1.1 Newton’s rings are formed by optical interference of reflections from
the lens-air and air-pane interfaces. Constructive interference results for a certain
color if the phase difference between the reflections with paths ABA and ACA is
an integer multiple of a wavelength for that color.

Fig. 1.2 Interferogram obtained by shining 0.5 micrometer wavelength light on a
diamond overlying a glass pane. The small triangular interference patterns are
associated with 0.12 micrometer deep pits on the diamond’s surface. (Image
obtained from the Nikon microscope website www.microscopyu.com/articles/
interferometry/twobeam.html.)
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1.1 Seismic interferometry 3
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Fig. 1.3 (a) Zero-offset reflection seismograms are shown above a sand lens with
an irregular overburden. Each trace is recorded with both the source and geophone
at the same location on the surface of the Earth; and a 1D wave propagation model
is assumed with only vertically traveling waves. The reflections from the top and
bottom of the sand lens vary in time as a function of trace location on the surface;
and the temporal variations are due to the irregular transit times through the inho-
mogeneous overburden (characterized by the irregular shapes in the overburden).
(b) Reflection seismograms shifted by the traveltimes of the sand-top reflections
remove the timing irregularities. See Appendix 1 for further details of a seismic
experiment.

goal here is to determine the geometry of the sand lens, which is similar to that of
an explorationist who is hunting for oil-sopped sand bodies (see Appendix 1 for a
basic background on seismic experiments).

Unfortunately, the shape of the sand lens suggested by the seismograms is
distorted because of the lateral velocity variations in the overburden. Such dis-
tortions are sometimes referred to as statics, not unlike the distorted image of a
fish seen from above a choppy lake surface. To remove these static distortions,
notice that the vertical transit time through the overburden is equal to the travel-
time τAyA of the reflection from the top of the sand lens. Here, τAyA denotes the
traveltime of a reflection wave propagating from A on the surface to y at the
top of the lens and back to A; and the raypath of this reflection is denoted by
the dashed arrows. Notice that τAyA varies from trace to trace and defines the
overburden statics. Shifting each trace by τAyA removes the overburden’s stat-
ics to give the undistorted seismograms in Figure 1.3b, which are kinematically
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4 Introduction

similar to traces obtained from virtual sources and receivers shifted to the top
of the lens. It is equivalent to applying statics corrections to land data (Yilmaz,
2001). Similar to the optical interferometry example, the time-differenced seismo-
grams in Figure 1.3b reveal the lens geometry free of the distorting effects of the
overburden.

Mathematical description For purposes of illustration, one of the traces in
Figure 1.3a is extracted and shown on the left-hand side of Figure 1.4. The middle
panel only contains the reflection from the top of the lens; and its reflection arrival
time τAyA is used to time shift the leftmost seismogram to give the one on the far
right. As will now be shown using a Dirac delta function, time shifting is roughly
equivalent to correlating a pair of traces with one another.

Dirac delta function
The Dirac delta function is defined by taking the limit of a sequence of strongly
peaked functions φn(t) (for n = 1, 2, 3, . . .) that peak at the argument t = 0 (Butkov,
1972). This gives a function that is effectively zero everywhere except when the
argument is zero and so enjoys the sifting property. For example, the unit-advance
operator δ(t + 1) (which peaks at t = −1) has the property of advancing the input
time signal f (t) by one time unit to an earlier time, i.e.,

f (t + 1) = f (t) � δ(t + 1) =
∫ ∞

−∞
f (t − τ)δ(τ + 1)dτ , (1.1)

where � denotes convolution. Similarly, the unit delay operator δ(t − 1) delays the
input signal by one time unit:

f (t − 1) = f (t) � δ(t − 1) =
∫ ∞

−∞
f (t − τ)δ(τ − 1)dτ . (1.2)

More generally, δ(t + |τ |) can be thought of as an acausal function because it
advances the input signal by convolution to an earlier time, while δ(t − |τ |) delays the
input signal by |τ | to a later time. In the real-time world, the Earth is a causal system
because it always delays the input signal (such as an earthquake propagating to a
distant receiver) and never advances it in time. That is, we never feel the earthquake
prior to its rupture time.

Assume an impulsive source described by the Dirac delta function δ(t) (Butkov,
1972), so that the leftmost reflection trace in Figure 1.4 is represented by the zero-
offset data d(A, t|A, 0):

d(A, t|A, 0) =
top-of-sand refl.︷ ︸︸ ︷
δ(t − τAyA) +

bottom-of-sand refl.︷ ︸︸ ︷
δ(t − τAzA), (1.3)
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Fig. 1.4 Time shifting the leftmost reflection trace by τAyA yields the trace on the
far right. This time-shifted trace is kinematically equivalent to the one recorded by
a receiver (and a source) buried at depth y. The time shifting operation is roughly
the same as a correlation of the far left and middle traces (Appendix 2).

where the reflection coefficients are assumed to be unity and the direct wave is
muted. The notation for d(A, t|A, 0) says that the coordinate vector A to the right
of the vertical bar represents the source location while the vector to the left is
the receiver location. Unless noted otherwise, the source initiation time is always
assumed to be at time zero, the observation time is denoted by t, and vectors will
be denoted by boldface letters. For notational simplicity, geometrical spreading
and reflection coefficient effects are suppressed by assuming a trace normalization
procedure (Yilmaz, 2001) such as anAGC (automatic gain control). More generally,
the exact wavefield excited by an impulsive point source (which is a line source in
2D) at B with initiation time ts and an observer at A is described by the Green’s
function g(A, t|B, ts) (Morse and Feshback, 1953).

The Fourier transform1 of d(A, t|A, 0) is equal to

D(A|A) = 1

2π
[eiωτAyA + eiωτAzA], (1.4)

where D(A|A) is the Fourier spectrum of the seismogram d(A, t|A, 0) with the
angular frequency variable suppressed. Shifting the seismograms by τAyA is equiv-
alent to multiplying the spectrum D(A|A) by e−iωτAyA to give the shifted spectrum
D(A|A)′ = D(A|A)e−iωτAyA = [1+ eiω(τAzA−τAyA)]/(2π). To form an interferogram
similar to the optical lens example, calculate the weighted intensity (or squared

1 See Appendix 2 for the definition of the Fourier transform and some useful identities.
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6 Introduction

magnitude spectrum) of D(A|A)′ as

4π2|D(A|A)′|2 = 4π2D(A|A)′D(A|A)′∗ = |1 + eiω(τAzA−τAyA)|2
= 2 + 2 cos(ω(τAyA − τAzA))

= 2 + 2 cos(ωτyzy), (1.5)

where τyzy = 2|z − y|/v is the two-way vertical traveltime in the sand lens, v

represents the P-wave velocity in the sand, ∗ indicates complex conjugation, and
|z − y| is the lens thickness.

Similar to the relationship between the optical interferogram2 and optical lens
thickness, the spectral interferogram |D(A|A)′|2 in Equation (1.5) only depends on
the transit time through the sand lens. This means that |D(A|A)′|2 will be sensitive
to any irregularities in the shape of the sand lens. Moreover, this spectral inter-
ferogram is kinematically equivalent to one recorded with source and receivers
redatumed3to the top of the sand lens. The next section shows this transformation
to be equivalent to correlation in the time domain.

Convolution, cross-correlation, and autocorrelation
Convolution between two real functions f (t) and g(t) is defined in the time domain as

h(t) = f (t) � g(t) =
∫ ∞

−∞
f (τ )g(t − τ)dτ , (1.6)

where the symbol � denotes convolution. As shown in Appendix 2, the Fourier
transform of h(t) is given by the spectrum H (ω) at angular frequency ω:

H (ω) = 2πF(ω)G(ω), (1.7)

where the spectrums of f (t) and g(t) are denoted by F(ω) and G(ω), respectively.
The correlation of two functions is defined as

h(t) = f (t) ⊗ g(t) = f (−t) � g(t) =
∫ ∞

−∞
f (τ )g(t + τ)dτ , (1.8)

2 The intensity of the upgoing harmonic lightwaves along the top of the optical lens in Figure 1.1 is similar in
mathematical form to Equation (1.5) except D(A|A) ≈ eiωτAyA−eiωτAzA ; here, AyA/2 is the thickness of the
lens below A and AzA/2 is the vertical distance between the glass pane and the point A on the lens surface.
Therefore, τAyA and τAzA are, respectively, the two-way transit times through the lens and from the lens surface
to the glass pane.

3 The acquisition surface where sources and receivers are located is known as a datum. Transforming the traces
such that they appear to have been recorded on a different acquisition surface is known as redatuming the traces.
Transforming traces to a deeper datum can rectify imaging problems associated with near-surface velocity
variations.
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1.1 Seismic interferometry 7

where the symbol ⊗ denotes correlation. For discretely sampled signals
f (t) → [f (0) f (�t) f (2�t) . . . f ((N − 1)�t)] = f and g(t) → g with N time
samples, f (t) ⊗ g(t) can be interpreted as the dot product of the Nx1 vector f with a
time-shifted copy of the Nx1 vector g. The time shift that leads to a large correlation
value says that f and the time-shifted copy of g have a strong resemblance to each
other. If f (t) = g(t) then Equation (1.8) is known as autocorrelation, otherwise it is
denoted as cross-correlation. As shown in Appendix 2, the Fourier transform of
f (t) ⊗ g(t) is given by

H (ω) = 2πF(ω)∗G(ω). (1.9)

If F(ω) = G(ω), then H (ω) = 2π |F(ω)|2 is the squared magnitude spectrum of the
autocorrelation function f (t) ⊗ f (t).
An important property of correlation is that the phases in the spectral product
2πF(ω)∗G(ω) = 2π |F(ω)∗||G(ω)|eiω(τG−τF ) are subtractive. Subtracting the
traveltime τF from τG leads to smaller traveltimes and events with shorter raypaths.
This is illustrated by shifting the traces in Figure 1.3a where the traveltime associated
with the common raypath AyA is contracted to give shorter duration traces in
Figure 1.3b. These shorter duration records are equivalent to ones obtained by
redatuming the source and receiver to be closer to the sand lens.
Similarly, temporal convolution of f (t) and g(t) leads to the spectral product
2πF(ω)G(ω) = 2π |F(ω)||G(ω)|eiω(τG+τF ) with additive phases. This means that the
resulting event has a longer traveltime than the events in f (t) and g(t), and this new
event has a longer raypath. Figure 1.5 illustrates this concept for both convolution and
correlation.

Traveltime shift ↔ trace correlation Rather than manually shifting each trace
by τAyA to remove the overburden statics, one can autocorrelate the traces. From
Equation (1.9), the weighted Fourier transform F( ) of the temporal autocorrelation
function d(A, t|A, 0)

⊗
d(A, t|A, 0) is the squared magnitude spectrum:

1

2π
F(d(A, t|A, 0)

⊗
d(A, t|A, 0)) = D(A|A)D(A|A)∗

= |eiωτAyA + eiωτAzA |2
= 2 + 2 cos(ωτyzy), (1.10)

which is equal to Equation (1.5) for the squared spectrum of the shifted traces. In
this example autocorrelation of the traces is equivalent to removing the distorting
effects of the overburden and redatuming the source and receivers to be just above
the target body.
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8 Introduction
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Fig. 1.5 (a) Convolution of traces creates events with longer traveltimes and
raypaths and (b) correlation of traces creates events with shorter raypaths and
traveltimes. For the correlation example, the source location at the left is reda-
tumed to be at a geophone location on the right. The distortions of the wavelet due
to geometric spreading, convolution, or correlation are conveniently ignored here
and in subsequent chapters.

Often an explosive source is buried at a depth zA to maximize the coupling
between the explosion and the Earth. In this case the events in the Figure 1.3a seis-
mograms will arrive earlier, but there will be no change in the shifted seismograms
in Figure 1.3b. This is because the 2-way transit time in the overburden is removed
by correlation as long as the source is buried no deeper than the lens. Therefore,
the redatumed data can be summed4 over N buried sources with depths denoted by
zA and still give a similar result:

�(B|A) =
∑
zA

D(B|A)D(B|A)∗, (1.11)

4 Summation of in-phase signals increases the signal/noise ratio of noisy traces. Summation is also a necessary
step for redatuming of non-zero offset traces as will be shown in the next section.
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1.1 Seismic interferometry 9

where A = (xA, yA, zA) represents the source position and the receiver position at
B = (xA, yA, 0) is just above the buried source position. The correlation function
�(B|A) is interpreted as redatumed data because its inverse Fourier transform
F−1( ) is

φ(B, t|A) = N [2π

acausal︷ ︸︸ ︷
δ(t + τyzy) +

causal︷ ︸︸ ︷
4πδ(t) + 2πδ(t − τyzy)], (1.12)

where the causal part of this expression 4πδ(t) + 2πδ(t − τyzy) represents the data
recorded by a source and receiver just above the sand lens. These data can then be
used to image the reflectivity distribution by a process known as seismic migration.

1.1.1 Multidimensional seismic interferometry

The concept of redatuming by correlation is also valid for non-zero offset data as
shown in Figure 1.6, except cross-correlated VSP traces rather than autocorrelated
traces are used.5 Here, correlation of the direct arrival d(A, t|x, 0) at A with the ghost
reflection6 d(B, t|x, 0)ghost recorded at B exactly cancels the traveltime of the ghost

T
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x x x

txA+ tA yB tA yB

A B A B A B

salt body

VSP ghostVSP direct SSP primary

txA

Fig. 1.6 Correlation of a ghost arrival at B with a direct arrival at A followed by
summation over source locations at x yields the redatumed surface seismic profile
(SSP) trace on the right d(B, t|A, 0). In this case, the ghost has been converted to a
primary, or more generally, vertical seismic profile (VSP) data have been converted
to SSP data. Short bars indicate that Snell’s law is honored at the reflection point;
and the drilling well is indicated by the platform attached to the thick vertical line.

5 To broaden our discussion we switch from the SSP geometry to the inverse VSP experiment without losing
applicability to the SSP example. The inverse and standard VSP experiments will often be referred to as VSP
experiments.

6 A ghost reflection is an arrival from the subsurface that also reflected off the Earth’s free surface; a primary
reflection is one where a wave travels down to the reflector and back up to the receiver just once.
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10 Introduction
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Fig. 1.7 Pictures of (a) a 3D salt velocity model and (b) the associated interfer-
ometric migration image obtained by migrating correlated traces from 6 receiver
gathers; the receivers were spaced at 20 m along the well. Solid triangle denotes the
approximate location of the 6 receivers and there is a 448 × 448 array of sources
on the surface with a 30 m source spacing (adapted from He et al., 2007).

along the common raypath xA. This results in the virtual surface seismic primary
reflection, whose raypath is seen on the far-right ray diagram. In this case both
sources and receivers are virtually located on the surface and can super-illuminate
a much wider portion of the Earth compared to standard VSP imaging where the
sources or receivers are confined to the well.

A dramatic example of super-illumination is the 3D interferometric migration
image shown in Figure 1.7. Here, the reflectivity model is estimated by correlating,
summing, and migrating just six receiver gathers of synthetic VSP traces. The
sources were located just below the free surface and the shallowest VSP receiver
was approximately positioned deeper than 1 km in the well. The coverage of the
VSP interferometric image is comparable to a surface seismic survey around the
well. In comparison, a standard VSP image only covers a small cone-shaped volume
beneath the shallowest receiver.

The source position at x in Figure 1.6 is fortuitously placed so that the direct ray
xAcoincides with the first leg of the specular7 ghost ray. This special source location
x is called a stationary source position. To insure that a stationary source position is
always found, the correlated records are summed (similar to Equation (1.11)) over
different source positions in the well:

d(B, t|A, 0) ≈
∑

xεSwell

d(A, t|x, 0) ⊗ d(B, t|x, 0)ghost , (1.13)

7 Short bars indicate that Snell’s law is honored, which means that portion of the ray is specular.
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