Cambridge University Press & Assessment 978-0-521-87121-1 — Diffusion E. L. Cussler Frontmatter <u>More Information</u>

DIFFUSION

MASS TRANSFER IN FLUID SYSTEMS

THIRD EDITION

Diffusion: Mass Transfer in Fluid Systems brings unsurpassed, engaging clarity to a complex topic. Diffusion is a key part of the undergraduate chemical engineering curriculum and at the core of understanding chemical purification and reaction engineering. This spontaneous mixing process is central to our daily lives, important in phenomena as diverse as the dispersal of pollutants to digestion in the small intestine. For students, this new edition goes to the basics of mass transfer and diffusion, illustrating the theory with worked examples and stimulating discussion questions. For professional scientists and engineers, it explores emerging topics and explains where new challenges are expected. Retaining its trademark enthusiastic style, the book's broad coverage now extends to biology and medicine.

This accessible introduction to diffusion and separation processes gives chemical and biochemical engineering students what they need to understand these important concepts.

New to this Edition

- **Diffusion:** Enhanced treatment of topics such as Brownian motion, composite materials, and barrier membranes.
- Mass transfer: Fundamentals supplemented by material on when theories work and why they fail.
- Absorption: Extensions include sections on blood oxygenators, artificial kidneys, and respiratory systems.
- **Distillation:** Split into two focused chapters on staged distillation and on differential distillation with structured packing.
- Advanced Topics: Including electrolyte transport, spinodal decomposition, and diffusion through cavities.
- New Problems: Topics are broad, supported by password-protected solutions found at www.cambridge.org/cussler.

Professor Cussler teaches chemical engineering at the University of Minnesota. His research, which centers on membrane separations, has led to over 200 papers and 4 books. A member of the National Academy of Engineering, he has received the Colburn and Lewis awards from the American Institute of Chemical Engineers, the Separations Science Award from the American Chemical Society, the Merryfield Design Award from the American Society for Engineering Education, and honorary doctorates from the Universities of Lund and Nancy.

Cambridge University Press & Assessment 978-0-521-87121-1 — Diffusion E. L. Cussler Frontmatter <u>More Information</u>

DIFFUSION MASS TRANSFER IN FLUID SYSTEMS

THIRD EDITION

E.L.CUSSLER University of Minnesota

Cambridge University Press & Assessment 978-0-521-87121-1 — Diffusion E. L. Cussler Frontmatter <u>More Information</u>

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521871211

© Cambridge University Press & Assessment 1984, 1997, 2009

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 1984 Second edition 1997 Third edition 2009 14th printing 2020

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data Cussler, E. L. Diffusion : mass transfer in fluid systems / E.L. Cussler. – 3rd ed. p. cm.

Includes index. ISBN 978-0-521-87121-1 (hardback) 1. Diffusion. 2. Mass transfer. 3. Fluids. I. Title. TP156.D47C878 2008 660'.294-dc22 2008018927

ISBN 978-0-521-87121-1 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information regarding prices, travel timetables, and other factual information given in this work is correct at the time of first printing but Cambridge University Press & Assessment does not guarantee the accuracy of such information thereafter.

Cambridge University Press & Assessment 978-0-521-87121-1 — Diffusion E. L. Cussler Frontmatter <u>More Information</u>

For Jason, Liz, Sarah, and Varick who wonder what I do all day

Cambridge University Press & Assessment 978-0-521-87121-1 — Diffusion E. L. Cussler Frontmatter <u>More Information</u>

Contents

List of Symbols		xiii	
Preface to Third Edition Preface to Second Edition			xix
			xxi
1	Mo	dels for Diffusion	1
	1.3	The Two Basic Models Choosing Between the Two Models Examples Conclusions <i>Questions for Discussion</i>	2 3 7 9 10
PA	RT I	Fundamentals of Diffusion	
2	Diff	fusion in Dilute Solutions	13
	2.1 2.2 2.3 2.4 2.5 2.6	Three Other Examples Convection and Dilute Diffusion	13 17 26 33 41 49 50 51 55
3	Diff	fusion in Concentrated Solutions	56
	3.3 3.4 3.5	Diffusion With Convection Different Forms of the Diffusion Equation Parallel Diffusion and Convection Generalized Mass Balances A Guide to Previous Work Conclusions <i>Questions for Discussion</i> <i>Problems</i> <i>Further Reading</i>	56 59 67 75 84 90 90 91
4	Dis	persion	95
	4.1 4.2	Dispersion From a Stack Dispersion Coefficients	95 97

vii

viii	Contents
 4.3 Dispersion in Turbulent Flow 4.4 Dispersion in Laminar Flow: Taylor Dispersion 4.5 Conclusions <i>Questions for Discussion</i> <i>Problems</i> <i>Further Reading</i> 	101 104 110 110 111 113
PART II Diffusion Coefficients	
5 Values of Diffusion Coefficients	117
 5.1 Diffusion Coefficients in Gases 5.2 Diffusion Coefficients in Liquids 5.3 Diffusion in Solids 5.4 Diffusion in Polymers 5.5 Brownian Motion 5.6 Measurement of Diffusion Coefficients 5.7 A Final Perspective Questions for Discussion Problems Further Reading 	117 126 134 135 139 142 156 157 157
6 Diffusion of Interacting Species	161
 6.1 Strong Electrolytes 6.2 Associating Solutes 6.3 Solute–Solvent Interactions 6.4 Solute–Boundary Interactions 6.5 A Final Perspective Questions for Discussion Problems Further Reading 	161 172 183 190 205 206 206 206 209
7 Multicomponent Diffusion	211
 7.1 Flux Equations for Multicomponent Diffusion 7.2 Irreversible Thermodynamics 7.3 Solving the Multicomponent Flux Equations 7.4 Ternary Diffusion Coefficients 7.5 Tracer Diffusion 7.6 Conclusions <i>Questions for Discussion</i> <i>Problems</i> <i>Further Reading</i> 	211 214 218 224 225 231 232 232 232 234
PART III Mass Transfer	
8 Fundamentals of Mass Transfer	237
8.1 A Definition of a Mass Transfer Coefficient8.2 Other Definitions of Mass Transfer Coefficients	237 243

Contents		ix
	 8.3 Correlations of Mass Transfer Coefficients 8.4 Dimensional Analysis: The Route to Correlations 8.5 Mass Transfer Across Interfaces 8.6 Conclusions Questions for Discussion Problems Eventlos Reading 	249 257 261 269 270 270 270
9	Further Reading Theories of Mass Transfer	273 274
	 9.1 The Film Theory 9.2 Penetration and Surface-Renewal Theories 9.3 Why Theories Fail 9.4 Theories for Solid–Fluid Interfaces 9.5 Theories for Concentrated Solutions 9.6 Conclusions Questions for Discussion Problems Further Reading 	275 277 281 284 294 298 300 300 300
10	Absorption	304
	 10.1 The Basic Problem 10.2 Absorption Equipment 10.3 Absorption of a Dilute Vapor 10.4 Absorption of a Concentrated Vapor 10.5 Conclusions Questions for Discussion Problems Further Reading 	305 307 314 321 326 326 327 331
11	Mass Transfer in Biology and Medicine	332
	 11.1 Mass Transfer Coefficients 11.2 Artificial Lungs and Artificial Kidneys 11.3 Pharmocokinetics 11.4 Conclusions Questions for Discussion Problems Further Reading 	333 339 347 350 351 351 352
12	Differential Distillation	353
	 12.1 Overview of Distillation 12.2 Very Pure Products 12.3 The Column's Feed and its Location 12.4 Concentrated Differential Distillation 12.5 Conclusions Questions for Discussion Problems Further Reading 	353 356 362 366 371 371 372 374

X			Contents
13	Stag	ed Distillation	375
	13.1	Staged Distillation Equipment	376
	13.2		379
		Concentrated Staged Distillation	385
	13.4	-	393
		Conclusions	400
		Questions for Discussion	400
		Problems	401
		Further Reading	403
14	Extra	action	404
	14.1	The Basic Problem	404
	14.2	Extraction Equipment	407
		Differential Extraction	409
	14.4	Staged Extraction	413
	14.5	Leaching	416
		Conclusions	420
		Questions for Discussion	420
		Problems	421
		Further Reading	423
15	Adso	rption	424
	15.1	Where Adsorption is Important	425
		Adsorbents and Adsorption Isotherms	427
	15.3	Breakthrough Curves	431
	15.4	Mass Transfer Effects	439
	15.5	Other Characteristics of Adsorption	443
	15.6	Conclusions	450
		Questions for Discussion	450
		Problems	450
		Further Reading	452
PA	RT I	V Diffusion Coupled With Other Processes	
16	Gene	ral Questions and Heterogeneous Chemical Reactions	455
	16.1	Is the Reaction Heterogeneous or Homogeneous?	456
	16.2	What is a Diffusion-Controlled Reaction?	457
	16.3	Diffusion and First-Order Heterogeneous Reactions	459
	16.4	Finding the Mechanism of Irreversible Heterogeneous Reactions	465
	16.5		469
	16.6	-	473
		Questions for Discussion	473
		Problems	474
		Further Reading	477

Сог	Contents		xi
17	Hom	ogeneous Chemical Reactions	478
	17.3 17.4 17.5	Mass Transfer with First-Order Chemical Reactions Mass Transfer with Second-Order Chemical Reactions Industrial Gas Treating Diffusion-Controlled Fast Reactions Dispersion-Controlled Fast Reactions Conclusions <i>Questions for Discussion</i> <i>Problems</i> <i>Further Reading</i>	479 488 492 500 504 507 508 508 508 512
18	Mem	branes	513
	18.3 18.4 18.5	Physical Factors in Membranes Gas Separations Reverse Osmosis and Ultrafiltration Pervaporation Facilitated Diffusion Conclusions <i>Questions for Discussion</i> <i>Problems</i> <i>Further Reading</i>	514 520 526 534 539 545 545 546 548
19	Cont	rolled Release and Related Phenomena	549
	19.3 19.4	Controlled Release by Solute Diffusion Controlled Release by Solvent Diffusion Barriers Diffusion and Phase Equilibrium Conclusions <i>Questions for Discussion</i> <i>Problems</i> <i>Further Reading</i>	551 555 558 562 565 565 566 566
20	Heat	Transfer	568
	20.1 20.2 20.3 20.4 20.5	Fundamentals of Heat Conduction General Energy Balances Heat Transfer Coefficients Rate Constants for Heat Transfer Conclusions <i>Questions for Discussion</i> <i>Problems</i> <i>Further Reading</i>	568 575 579 585 591 591 591 593
21	Simu	ltaneous Heat and Mass Transfer	594
	21.1 21.2	Mathematical Analogies Among Mass, Heat, and Momentum Transfer Physical Equalities Among Mass, Heat, and Momentum Transfer	594 600

xii		Contents
21.3	Drying	604
	Design of Cooling Towers	609
	Thermal Diffusion and Effusion	615
21.6	Conclusions	621
	Questions for Discussion	621
	Problems	622
	Further Reading	624
Index		626

Cambridge University Press & Assessment 978-0-521-87121-1 — Diffusion E. L. Cussler Frontmatter <u>More Information</u>

List of Symbols

а	surface area per volume
а	major axis of ellipsoid (Section 5.2)
a, a_i	constant
A	area
A	absorption factor (Chapters 13 and 14)
b	constant
b	minor axis of ellipsoid (Section 5.2)
В	bottoms (Chapters 10, 12 and 13)
B , b	boundary positions (Section 7.3)
С	total molar concentration
c_1	concentration of species 1, in either moles per volume or mass per volume
c _{CMC}	critical micelle concentration (Section 6.2)
c _T	total concentration (Chapter 6)
\overline{c}_1	concentration of species 1 averaged over time (Sections 4.3 and 17.4)
c'_1	concentration fluctuation of species 1 (Sections 4.3, 17.3, and 17.4)
C C	vector of concentrations (Section 7.3)
$\frac{c}{c_{1i}}$ C $\tilde{C}_{p}, \hat{C}_{p}$ $\tilde{C}_{v}, \hat{C}_{v}$	concentration of species 1 at an interface <i>i</i>
C	capacity factor (Section 13.1)
Ĉ. Ĉ.	molar and specific heat capacities respectively, at constant pressure
$\tilde{C}^{p,Cp}$	molar and specific heat capacities respectively, at constant pressure
c_v, c_v d	diameter or other characteristic length
u D	binary diffusion coefficient
D D	•
D $D_{\rm eff}$	distillate (Chapters 12 and 13)
•••	effective diffusion coefficient, for example, in a porous solid
D_i	binary diffusion coefficient of species <i>i</i>
D_0	binary diffusion coefficient corrected for activity effects
D_{ij}	multicomponent diffusion coefficient (Chapter 7)
D_{Kn}	Knudsen diffusion coefficient of a gas in a small pore
$D_{\rm m}$	micelle diffusion coefficient (Section 6.2)
D^*	intradiffusion coefficient (Section 7.5)
E	dispersion coefficient
E	extraction factor (Chapter 14)
E(t)	residence-time distribution (Section 9.2)
f	friction coefficient for a diffusing solute (Section 5.2)
f	friction factor for fluid flow (Chapter 21)
F	packing factor (Section 10.2)
F	feed (Chapters 12 and 13)
F	Faraday's constant (Section 6.1)
F(D)	solution to a binary diffusion problem (Section 7.3)
g	acceleration due to gravity

xiii

xiv	List of Symbols
C	
$G \\ G''$	molar flux of gas
G'	mass flux of gas (Sections 10.2 and 13.1) molar flux of gas in stripping section (Chapters 12 and 13)
h	reduced plate height (Section 15.5)
h, h_i	heat transfer coefficients (Chapters 20 and 21)
H	partition coefficient
\tilde{H}, \hat{H}	molar and specific enthalpies (Chapters 20–21 and Chapter 7, respectively)
$\dot{\bar{H_i}}$	partial specific enthalpy (Chapter 7)
HTU	height of transfer unit
i	current density (Section 6.1)
j_v	volume flux across a membrane (Section 18.3)
ј т	total electrolyte flux (Section 6.1)
\boldsymbol{j}_i	diffusion flux of solute <i>i</i> relative to the volume average velocity
$\mathbf{j}_{i}_{*}^{m}$	diffusion flux of solute <i>i</i> relative to the mass average velocity
$ \begin{array}{c} \boldsymbol{j}_i \\ \boldsymbol{j}_i^m \\ \boldsymbol{j}_i^* \\ \boldsymbol{j}_i^{(2)} \\ \boldsymbol{j}_1^a \\ \boldsymbol{j}_i^a \\ \boldsymbol{J}_s \end{array} $	diffusion flux relative to the molar average velocity
$\mathbf{j}_{1}^{(2)}$	diffusion flux of solute (1) relative to velocity of solvent (2)
\mathbf{J}_{i}^{u}	diffusion flux of solute <i>i</i> relative to reference velocity a
	entropy flux (Section 7.2)
$egin{array}{c} m{J}_{\mathrm{T}}\ k \end{array}$	total solute flux in different chemical forms (Section 6.2)
	mass transfer coefficient based on a concentration driving force mass transfer coefficient based on a partial pressure driving force
k_p	(Table 8.2-2)
k_x, k_y	mass transfer coefficients based on mole fraction driving forces in liquid and gas, respectively (Table 8.2-2)
$k_{\rm B}$	Boltzmann's constant
$k_T k^0$	thermal conductivity (Chapters 20–21)
k^{0}	mass transfer coefficient at low transfer rate (Section 9.5) mass transfer coefficient without chemical reaction (Chapter 17)
k'	capacity factor (Sections 4.4 and 15.1)
ĸ K	equilibrium constant for chemical reaction
$K_{\rm G}, K_{\rm L}$	overall mass transfer coefficients based on concentration driving force in gas or liquid, respectively
K_p	overall mass transfer coefficient based on partial pressure difference in gas
K_x, K_y	overall mass transfer coefficient based on mole fraction driving force in liquid or gas, respectively
Kn	Knudsen number (Section 6.4)
l	length, e.g., of a membrane
L	length, e.g., of a pipe
L	molar flux of liquid
L''	mass flux of liquid (Sections 10.2 and 13.1)
L'	molar flux of liquid in stripping section (Sections 12.3 and 13.3)
L_{ij}	Onsager phenomenological coefficient (Section 7.2)
L_p	solvent permeability (Section 18.3)
m	partition coefficient relating mole fractions in gas and liquid
M	mass
$M_{ ilde{M}}$	total solute (Sections 4.2 and 5.5)
$ ilde{M}_i$	molecular weight of species <i>i</i>

п	micelle aggregation number or hydration number (Section 6.2)
n _i	flux of species <i>i</i> relative to fixed coordinates
N	number of ideal stages
\tilde{N}	Avogadro's number
N_i	flux of species <i>i</i> at an interface
N_i	number of moles of species <i>i</i>
NTU	number of transfer units
р	pressure
Р	power
Р	membrane permeability (Chapter 18)
P_{ij}	weighting factor (Section 7.3)
q	scattering vector (Section 5.6)
q	feed quality (Sections 12.3 and 13.3)
q	solute concentration per volume adsorbent (Chapter 15)
q	energy flux (Chapters 7, 20, and 21)
r	radius
<i>r</i> , <i>r</i> _{<i>i</i>}	rate of chemical reaction
R	gas constant
$R_{\rm D}$	reflux ratio (Chapters 12 and 13)
R_0	characteristic radius
s â	distance from pipe wall (Section 9.4)
\hat{S}	specific entropy (Chapter 7)
$ar{S}_i$	partial specific entropy of species i
t	time
t	modal matrix (Section 7.3)
t_i	transference number of ion i (Section 6.1)
$t_{1/2}$	reaction half-life
Т	temperature
u_i	ionic mobility (Section 6.1)
$\stackrel{U}{\hat{U}}$	overall heat transfer coefficient
Û	specific internal energy
v_r, v_{θ}	velocities in the r and θ directions
v_x, v_y	velocities in the x and y directions
v v ^a	mass average velocity velocity relative to reference frame <i>a</i>
v v ^o	volume average velocity
v v'	velocity fluctuation (Sections 4.3 and 17.4)
v v*	molar average velocity
,	velocity of species <i>i</i>
$\frac{v_i}{V}$	volume
\bar{V}_i	partial molar or specific volume of species <i>i</i>
V_{ij}	fraction of molecular volume (Section 5.1)
W	width
W	work (Section 20.2)
W_s	shaft work (Section 20.2)
x	mole fraction in liquid of more volatile species (Chapters 12 and 13)
	more maction in inquite or more volutile species (chapters 12 and 15)

xvi	List of Symbols
$x_{\rm B}, x_{\rm D}, x_{\rm F}$	mole fractions of more volatile species in bottoms, distillate and feed, respectively (Chapters 12 and 13)
x_i	mole fraction of species <i>i</i> , especially in a liquid or solid phase
\mathbf{X}_i	generalized force causing diffusion (Section 7.2)
У	mole fraction in vapor of more volatile species (Chapters 12 and 13)
y_i	mole fraction of species <i>i</i> in a gas
Ζ	position
	magnitude of charge (Section 6.1)
Zi	charge on species <i>i</i>
α	thermal diffusivity (Chapters 20 and 21)
α	thermal diffusion factor (Section 21.5)
α	flake aspect ratio (Sections 6.4 and 9.5)
α_{ij}	conversion factor (Section 7.1)
β	diaphragm cell calibration constant (Sections 2.2 and 5.5)
β	pervaporation selectivity (Section 18.4)
Ŷ	interfacial influence (Section 6.3)
γ	surface tension (Section 6.4) activity coefficient of species <i>i</i>
γ_i δ	thickness of thin layer, especially a boundary layer
$\delta(z)$	Dirac function of z
δ_{ij}	Kronecker delta
С ₁ у Е	void fraction
8	enhancement factor (Section 17.1)
E _{ij}	interaction energy between colliding molecules (Sections 5.1 and 20.4)
ζ	combined variable
η	Murphree efficiency (Section 13.4)
ή	effectiveness factor (Section 17.1)
$\dot{\theta}$	dimensionless concentration
θ	fraction of unused adsorption bed (Section 15.3)
θ	fraction of surface elements (Section 9.2)
κ_i, κ_{-i}	forward and reverse reaction rate constants respectively of reaction <i>i</i>
λ	length ratio (Section 6.4)
λ	heat of vaporization (Sections 12.3 and 13.3)
λ_i	equivalent ionic conductance of species i (Section 6.1)
Λ	equivalent conductance
μ	viscosity
μ_i	chemical potential of species <i>i</i>
μ_i	partial specific Gibbs free energy of species <i>i</i> , i.e., the chemical potential divided by the molecular weight (Section 7.2)
v	kinematic viscosity
v	stoichiometric coefficient (Sections 16.5 and 17.2)
ξ	dimensionless position
ξ	correlation length (Section 6.3)
Π	osmotic pressure (Section 18.3)
ho	total density, i.e., total mass concentration
$ ho_i$	mass concentration of species <i>i</i>
σ	rate of entropy production (Section 7.2)

Cambridge University Press & Assessment 978-0-521-87121-1 — Diffusion E. L. Cussler Frontmatter <u>More Information</u>

List of Symbols

xvii

σ	standard deviation (Sections 5.5 and 15.4)
σ, σ'	reflection coefficients (Section 18.3)
σ	Soret coefficient (Section 21)
σ	diagonal matrix of eigenvalues (Chapter 7)
σ_i	eigenvalue (Section 7.3)
σ_{ii}	collision diameter
τ	characteristic time
τ	tortuosity (Section 6.4)
τ	residence time for surface element (Section 9.2)
τ	shear stress (Chapter 21)
$ au_0$	shear stress at wall (Section 9.4)
ϕ	Thiele modulus (Section 17.1)
ϕ_i	volume fraction of species <i>i</i>
ψ	electrostatic potential
ψ	combined concentration (Section 7.3)
ω	jump frequency (Section 5.3)
ω	regular solution parameter (Section 6.3)
ω	coefficient of solute permeability (Section 18.3)
ω_i	mass fraction of species i
Ω	collision integral in Chapman–Enskog theory (Section 5.1)