Cambridge University Press 978-0-521-87107-5 - Radiation in the Atmosphere: A Course in Theoretical Meteorology Wilford Zdunkowski, Thomas Trautmann and Andreas Bott Table of Contents More information

Contents

	Prefe	ace	page x
1	Intro	Introduction	
	1.1	The atmospheric radiation field	1
	1.2	The mean global radiation budget of the Earth	3
	1.3	Solar-terrestrial relations	8
	1.4	Basic definitions of radiative quantities	16
	1.5	The net radiative flux density vector	21
	1.6	The interaction of radiation with matter	23
	1.7	Problems	26
2	The radiative transfer equation		28
	2.1	Eulerian derivation of the radiative transfer equation	28
	2.2	The direct-diffuse splitting of the radiance field	34
	2.3	The radiatively induced temperature change	36
	2.4	The radiative transfer equation for a horizontally	
		homogeneous atmosphere	37
	2.5	Splitting of the radiance field into upwelling and	
		downwelling radiation	46
	2.6	The solution of the radiative transfer equation for a	
		horizontally homogeneous atmosphere	51
	2.7	Radiative flux densities and heating rates	57
	2.8	Appendix	61
	2.9	Problems	62
3	Principles of invariance		64
	3.1	Definitions of the scattering and transmission functions	64
	3.2	Diffuse reflection in a semi-infinite atmosphere	66
	3.3	Chandrasekhar's four statements of the principles of invariance	70
	3.4	The inclusion of surface reflection	75

Cambridge University Press
978-0-521-87107-5 - Radiation in the Atmosphere: A Course in Theoretical Meteorology
Wilford Zdunkowski, Thomas Trautmann and Andreas Bott
Table of Contents
Moreinformation

viii		Contents	
	3.5	Diffuse reflection and transmission for isotropic scattering	78
	3.6	Problems	80
4	Quas	i-exact solution methods for the radiative transfer equation	82
	4.1	The matrix operator method	82
	4.2	The successive order of scattering method	92
	4.3	The discrete ordinate method	95
	4.4	The spherical harmonics method	104
	4.5	The finite difference method	110
	4.6	The Monte Carlo method	118
	4.7	Appendix	128
	4.8	Problems	131
5	Radi	ative perturbation theory	133
	5.1	Adjoint formulation of the radiative transfer equation	133
	5.2	Boundary conditions	137
	5.3	Radiative effects	143
	5.4	Perturbation theory for radiative effects	147
	5.5	Appendix	153
	5.6	Problems	157
6	Two-	stream methods for the solution of the radiative transfer equation	158
	6.1	δ -scaling of the phase function	158
	6.2	The two-stream radiative transfer equation	161
	6.3	Different versions of two-stream methods	166
	6.4	Analytical solution of the two-stream methods for a	
		homogeneous layer	172
	6.5	Approximate treatment of scattering in the infrared spectral	
		region	176
	6.6	Approximations for partial cloud cover	179
	6.7	The classical emissivity approximation	183
	6.8	Radiation charts	190
	6.9	Radiative equilibrium	195
_	6.10	Problems	201
7	Trans	smission in individual spectral lines and in bands of lines	204
	7.1	The shape of single spectral lines	205
	7.2	Band models	216
	7.3	The fitting of transmission functions	237
	7.4	Transmission in inhomogeneous atmospheres	255
	7.5	Results	261
	7.6	Appendix	265
0	7.7	Problems	271
8	Abso	orption by gases	276
	8.1	Introduction	276

Cambridge University Press
978-0-521-87107-5 - Radiation in the Atmosphere: A Course in Theoretical Meteorology
Wilford Zdunkowski, Thomas Trautmann and Andreas Bott
Table of Contents
Moreinformation

		Contents	ix
	8.2	Molecular vibrations	277
	8.3	Some basic principles from quantum mechanics	288
	8.4	Vibrations and rotations of molecules	304
	8.5	Matrix elements, selection rules and line intensities	316
	8.6	Influence of thermal distribution of quantum states on line	
		intensities	320
	8.7	Rotational energy levels of polyatomic molecules	322
	8.8	Appendix	327
	8.9	Problems	332
9	Light	scattering theory for spheres	333
	9.1	Introduction	333
	9.2	Maxwell's equations	334
	9.3	Boundary conditions	336
	9.4	The solution of the wave equation	339
	9.5	Mie's scattering problem	345
	9.6	Material characteristics and derived directional quantities	359
	9.7	Selected results from Mie theory	367
	9.8	Solar heating and infrared cooling rates in cloud layers	374
	9.9	Problems	376
10	Effec	ts of polarization in radiative transfer	378
	10.1	Description of elliptic, linear and circular polarization	378
	10.2	The Stokes parameters	383
	10.3	The scattering matrix	386
	10.4	The vector form of the radiative transfer equation	395
	10.5	Problems	397
11	Remo	ote sensing applications of radiative transfer	399
	11.1	Introduction	399
	11.2	Remote sensing based on short- and long-wave radiation	402
	11.3	Inversion of the temperature profile	417
	11.4	Radiative perturbation theory and ozone profile retrieval	431
	11.5	Appendix	440
	11.6	Problems	441
12	Influe	ence of clouds on the climate of the Earth	443
	12.1	Cloud forcing	443
	12.2	Cloud feedback in climate models	446
	12.3	Problems	451
	Answ	vers to problems	452
	List of frequently used symbols		459
	Refe	rences	466
	Index		478