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Introduction

1.1 The atmospheric radiation field

The theory presented in this book applies to the lower 50 km of the Earth’s

atmosphere, that is to the troposphere and to the stratosphere. In this part of the

atmosphere the so-called local thermodynamic equilibrium is observed.

In general, the condition of thermodynamic equilibrium is described by the

state of matter and radiation inside a constant temperature enclosure. The radiation

inside the enclosure is known as black body radiation. The conditions describing

thermodynamic equilibrium were first formulated by Kirchhoff (1882). He stated

that within the enclosure the radiation field is:

(1) isotropic and unpolarized;

(2) independent of the nature and shape of the cavity walls;

(3) dependent only on the temperature.

The existence of local thermodynamic equilibrium in the atmosphere implies that

a local temperature can be assigned everywhere. In this case the thermal radiation

emitted by each atmospheric layer can be described by Planck’s radiation law.

This results in a relatively simple treatment of the thermal radiation transport in the

lower sections of the atmosphere.

Kirchhoff’s and Planck’s laws, fundamental in radiative transfer theory, will be

described in the following chapters. While the derivation of Planck’s law requires a

detailed microscopic picture, Kirchhoff’s law may be obtained by using purely ther-

modynamic arguments. The derivation of Kirchhoff’s law is presented in numerous

textbooks such as in Thermodynamics of the Atmosphere by Zdunkowski and Bott

(2004).1

1 Whenever we make reference to this book, henceforth we simply refer to THD (2004).
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2 Introduction

The atmosphere, some sort of an open system, is not in thermodynamic equi-

librium since the temperature and the radiation field vary in space and in time.

Nevertheless, in the troposphere and within the stratosphere the emission of ther-

mal radiation is still governed by Kirchhoff’s law at the local temperature. The

reason for this is that in these atmospheric regions the density of the air is suffi-

ciently high so that the mean time between molecular collisions is much smaller than

the mean lifetime of an excited state of a radiating molecule. Hence, equilibrium

conditions exist between vibrational and rotational and the translational energy of

the molecule. At levels higher than 50 km, the two time scales become comparable

resulting in a sufficiently strong deviation from thermodynamic equilibrium so that

Kirchhoff’s law cannot be applied anymore.

The breakdown of thermodynamic equilibrium in higher regions of the atmo-

sphere also implies that Planck’s law no longer adequately describes the thermal

emission so that quantum theoretical arguments must be introduced to describe

radiative transfer. Quantum theoretical considerations of this type will not be treated

in this book. For a study of this situation we refer the reader to the textbook Atmo-

spheric Radiation by Goody and Yung (1989).

The units usually employed to measure the wavelength of radiation are the

micrometer (µm) with 1µm = 1026 m or the nanometer (nm) with 1 nm = 1029 m

and occasionally Ångströms (Å) where 1 Å =10210 m. The thermal radiation spec-

trum of the Sun, also called the solar radiation spectrum, stretches from roughly

0.2–3.5 µm where practically all the thermal energy of the solar radiation is located.

It consists of ultraviolet radiation (<0.4 µm), visible radiation (0.4–0.76 µm), and

infrared radiation >0.76 µm. The thermal radiation spectrum of the Earth ranges

from about 3.5–100 µm so that for all practical purposes the solar and the terres-

trial radiation spectrum are separated. As will be seen later, this feature is of great

importance facilitating the calculation of atmospheric radiative transfer. Due to the

positions of the spectral regions of the solar and the terrestrial radiation we speak

of short-wave and long-wave radiation. The terrestrial radiation spectrum is also

called the infrared radiation spectrum.

Important applications of atmospheric radiative transfer are climate modeling

and weather prediction which require the evaluation of a prognostic temperature

equation. One important term in this equation, see e.g. Chapter 3 of THD (2004), is

the divergence of the net radiative flux density whose evaluation is fairly involved,

even for conditions of local thermodynamic equilibrium. Accurate numerical radia-

tive transfer algorithms exist that can be used to evaluate the radiation part of the

temperature prediction equation. In order to judiciously apply any such computer

model, some detailed knowledge of radiative transfer is required.

There are other areas of application of radiative transfer such as remote sensing.

In the concluding chapter of this textbook we will present various examples.
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Fig. 1.1 The Earth’s annual global mean energy budget, after Kiehl and
Trenberth (1997), see also Houghton et al. (1996). Units are (W m22 ).

1.2 The mean global radiation budget of the Earth

Owing to the advanced satellite observational techniques now at our disposal, we are

able to study with some confidence the Earth’s annual mean global energy budget.

Early meteorologists and climatologists have already understood the importance

of this topic, but they did not have the observational basis to verify their results.

A summary of pre-satellite investigations is given by Hunt et al. (1986). In the

following we wish to briefly summarize the mean global radiation budget of the

Earth according to Kiehl and Trenberth (1997). Here we have an instructive exam-

ple showing in which way radiative transfer models can be applied to interpret

observations.

The evaluation of the radiation model requires vertical distributions of absorbing

gases, clouds, temperature, and pressure. For the major absorbing gases, namely

water vapor and ozone, numerous observational data must be handled and sup-

plemented with model atmospheres. In order to calculate the important influence

of CO2 on the infrared radiation budget, Kiehl and Trenberth specify a constant

volume mixing ratio of about 350 ppmv. Moreover, it is necessary to employ distri-

butions of the less important absorbing gases CH4, N2O, and of other trace gases.

Using the best data presently available, they have provided the radiation budget as

displayed in Figure 1.1.
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4 Introduction

The analysis employs a solar constant S0 = 1368 W m22. This is the solar radi-

ation, integrated over the entire solar spectral region which is received by the Earth

per unit surface perpendicular to the solar beam at the mean distance between the

Earth and the Sun. Since the circular cross-section of the Earth is exposed to the

parallel solar rays, each second our planet receives the energy amount Ã R2S0 where

R is the radius of the Earth. On the other hand, the Earth emits infrared radiation

from its entire surface 4Ã R2 which is four times as large as the cross-section. Thus

for energy budget considerations we must distribute the intercepted solar energy

over the entire surface so that, on the average, the Earth’s surface receives 1/4 of

the solar constant. This amounts to a solar input of 342 W m22 as shown in the

figure.

The measured solar radiation reflected to space from the Earth’s surface–atmo-

sphere system amounts to about 107 W m22. The ratio of the reflected to the

incoming solar radiation is known as the global albedo which is close to 31%.

Early pre-satellite estimates of the global albedo resulted in values ranging from

40–50%. With the help of radiation models and measurements it is found that

cloud reflection and scattering by atmospheric molecules and aerosol particles

contribute 77 W m22 while ground reflection contributes 30 W m22. In order to

have a balanced radiation budget at the top of the atmosphere, the net gain

342 2 107 = 235 W m22 of the short-wave solar radiation must be balanced by

emission of long-wave radiation to space. Indeed, this is verified by satellite mea-

surements of the outgoing long-wave radiation.

Let us now briefly consider the radiation budget at the surface of the Earth,

which can be determined only with the help of radiation models since sufficiently

dense surface measurements are not available. Assuming that the ground emits

black body radiation at the temperature of 15çC, an amount of 390 W m22 is lost

by the ground. According to Figure 1.1 this energy loss is partly compensated by

a short-wave gain of 168 W m22 and by a long-wave gain of 324 W m22 because of

the thermal emission of the atmospheric greenhouse gases (H2O, CO2, O3, CH4,

etc.) and clouds. Thus the total energy gain 168 + 324 = 492 W m22 exceeds the

long-wave loss of 390 W m22 by 102 W m22.

In order to have a balanced energy budget at the Earth’s surface, other phys-

ical processes must be active since a continuous energy gain would result in an

ever increasing temperature of the Earth’s surface. From observations, Kiehl and

Trenberth estimated a mean global precipitation rate of 2.69 mm day21 enabling

them to compute a surface energy loss due to evapotranspiration. Multiplying

2.69 mm day21 by the density of water and by the latent heat of vaporization amounts

to a latent heat flux density of 78 W m22. Thus the surface budget is still unbalanced

by 24 W m22. Assigning a surface energy loss of 224 W m22 resulting from sens-

ible heat fluxes yields a balanced energy budget at the Earth’s surface. The individual
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1.2 The mean global radiation budget of the Earth 5

losses due to turbulent surface fluxes are uncertain within several percent since it is

very difficult to accurately assess the global amount of precipitation which implies

that the estimated sensible heat flux density is also quite uncertain. Only the sum

of the turbulent surface flux densities is reasonably certain.

Finally, we must study the budget of the atmosphere itself. Figure 1.1 reveals

that the atmosphere gains 67 W m22 by absorption of solar radiation, 102 W m22 by

turbulent surface fluxes, and additionally 350 W m22 resulting from long-wave radi-

ation emitted by the surface of the Earth and intercepted by atmospheric greenhouse

gases and clouds. The total of 519 W m22 must be re-emitted by the atmosphere.

As shown in the figure, the atmospheric greenhouse gases and the clouds emit

165 + 30 = 195 W m22 to space and 324 W m22 as back-radiation to the surface

of the Earth just balancing the atmospheric energy gain.

We also see that from the 390 W m22 emitted by the Earth’s surface only

350 W m22 are intercepted by the atmosphere. To account for the remaining

40 W m22 we recognize that these escape more or less unimpeded to space in the

so-called spectral window region as will be discussed later.

By considering the budget in Figure 1.1, we observe that only the reflected solar

radiation and the long-wave radiation emitted to space are actually verified by

measurements. However, the remaining budget components should also be taken

seriously since nowadays radiation models are quite accurate. Nevertheless, the

output of the models cannot be any more accurate than the input data. In future

days further refinements and improvements of the global energy budget can be

expected.

In order to calculate the global radiation budget, we must have some detailed

information on the absorption behavior of atmospheric trace gases and the physical

properties of aerosol and cloud particles. In a later chapter we will study the radi-

ative characteristics of spherical particles by means of the solution of Maxwell’s

equations of electromagnetic theory. Here we will only qualitatively present the

absorption spectrum of the most important greenhouse gases.

Figure 1.2 combines some important information regarding the solar spectrum.

The upper curve labeled TOA (top of the atmosphere) shows the extraterrestrial

incoming solar radiation after Coulson (1975). For wavelengths exceeding 1.4 µm

this curve coincides closely with a Planckian black body curve of 6000 K. The lower

curve depicts the total solar radiation reaching the Earth’s surface for a solar zenith

angle »0 = 60ç. The calculations were carried out with sufficiently high spectral res-

olution using the so-called Moderate Resolution Atmospheric Radiance and Trans-

mittance Model (MODTRAN; version 3.5; Anderson, 1996; Kneizys et al., 1996)

program package. All relevant absorbing trace gases shown in the figure are included

in the calculations. Not shown are the positions of the CO and CH4 absorption bands

which are located in the solar spectrum and in the near infared spectral region of
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Fig. 1.2 Incoming solar flux density at the top of the atmosphere (TOA) and
at ground level. The solar zenith angle is »0 = 60ç, ground albedo Ag = 0. The
spectral positions of major absorption bands of the trace gases are shown.

thermal radiation. A tabulation of bands of these two trace gases is given, for exam-

ple, in Goody (1964a). Since the radiation curve for ground level shows a high

spectral variability, it was artificially smoothed for better display to a somewhat

lower spectral resolution.

Figure 1.3 depicts the spectral distribution of the upwelling thermal radiance

as a function of the wave number (to be defined later) at a height of 60 km. For

comparison purposes the Planck black body radiance curves for several tempera-

tures are shown also. The maximum of the 300 K black body curve is located at

roughly 600 cm21 . The calculations were carried out with the same program pack-

age (MODTRAN) using a spectral resolution of 1 cm21 . All relevant absorbing and

emitting gases have been accounted for. The widths of the major infrared absorption

bands (H2O, CO2, O3) are also shown in the figure.

Kiehl and Trenberth (1997) produced similar curves for the solar and infrared

radiative fluxes per unit surface. However, in addition to the absorption by gases

shown in Figures 1.2 and 1.3, they also included the effects of clouds in their

calculations by assuming an effective droplet radius of 10 µm and suitable li-

quid water contents. Moreover, assumptions were made about the spatial distri-

butions of clouds. Their results indicate that water vapor is the most important
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1.2 The mean global radiation budget of the Earth 7

Fig. 1.3 Upwelling infrared radiance at a height of 60 km for a clear sky mid-
latitude summer atmosphere.

gas absorbing 38 W m22 of solar radiation which is followed by O3 (15 W m22 )

and O2 (2 W m22 ) while the effect of CO2 may be ignored. Thus the greenhouse

gases absorb 55 W m22. Figure 1.1, however, requires 67 W m22. The 12 W m22 still

missing must be attributed to partial cloudiness and to spectral overlap effects, i.e.,

cloud droplets and gases absorb at the same wavelength. Handling clouds in the

radiative transfer problem is usually very difficult since in general water droplet

size distributions are unknown.

Finally, let us consider the gaseous absorption bands of the infrared spectrum.

In the calculations of Kiehl and Trenberth (1997) analogous to Figure 1.3, the

surface is assumed to emit black body radiation with a temperature of 15çC. The

major absorbing gases are H2O, O3, and CO2. Of course, the same distribution of

absorbing gases and clouds as for solar radiation is assumed. Integration of the

infrared curve at the top of the atmosphere over the entire spectral region yields

235 W m22 as required by Figure 1.1.

We conclude this section by considering a simple example to obtain the effec-

tive emission temperature of the system Earth’s surface–atmosphere. As we have

discussed above, the cross-section of the Earth intercepts the solar energy Ã R2S0.

Since the global albedo is 31%, the rate of absorption is 1368(12 0.31) =
944 W m22. Assuming that the Earth emits black body radiation, we must apply the
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8 Introduction
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Fig. 1.4 Simplified elliptical geometry of the Earth’s orbit.

well-known Stefan–Boltzmann law so that the Earth’s surface emits 4Ã R2Ã T 4

where Ã is the Stefan–Boltzmann constant. Assuming steady-state conditions,

we have Ã R2× 944 W m22 = 4Ã R2Ã T 4 from which we obtain the temperature

T = 254 K which resembles the effective emission temperature of our planet.

1.3 Solar–terrestrial relations

To a high degree of accuracy the Earth’s orbit around the Sun can be described by

an ellipse with eccentricity e =
:

a2 2 b2/a = 0.01673, where a and b are, respec-

tively, the semi-major and semi-minor axis of the ellipse, see Figure 1.4. The Sun’s

position is located in one of the two elliptical foci (F1, F2). For demonstration pur-

poses, the figure exaggerates the eccentricity of the elliptical orbit. The perihelion,

that is the shortest distance rmin between Sun and Earth, occurs around January

3rd, while the aphelion, that is the largest distance rmax between Sun and Earth, is

registered around July 4th. These times are not constant, but they vary from year to

year. Often the mean distance between the Earth and the Sun is approximated by

a =
rmin + rmax

2
= 1.496 × 108 km (1.1)

The distances rmin and rmax are related to a and e via

rmin =a(1 2 e) = 1.471 × 108 km

rmax =a(1 + e) = 1.521 × 108 km
(1.2)
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1.3 Solar–terrestrial relations 9

Beginning with January 1st, i.e. Julian day number 1 of the year, a normal year

counts 365 days (for simplicity we will not take the occurrence of leap years into

account). A particular day of the year is then labelled with its corresponding Julian

day number J .

We introduce the rotation angle � of the Earth beginning with the 1st of January

as

� =
2Ã

365
(J 2 1) (1.3)

where � is expressed in radians.

During the course of the year the angular distance Sun–Earth, the solar declina-

tion ·, and the so-called equation of time ET change in a more or less harmonic

manner. In the following we will discuss simple expressions developed by Spencer

(1971) which are accurate enough to evaluate the quantities (a/r )2, ·, and ET ,

where r is the actual distance between Sun and Earth. The term (a/r )2 is given by

�a

r

�2

= 1.000110 + 0.034221 cos � + 0.001280 sin �

+ 0.000719 cos 2� + 0.000077 sin 2� (1.4)

with a maximum error of approximately 1024. If S0 = 1368 W m22 is the solar

constant for the mean distance between Sun and Earth, the actual solar constant

varies as a function of J

S0(J ) = S0

�

a

r (J )

�2

(1.5)

According to (1.4) the maximum change of S0(J ) relative to S0 has an amplitude

of approximately 3.3%.

The solar declination · is defined as the angle between the Earth’s equatorial

plane and the actual position of the Sun as seen from the center of the Earth. The

Earth’s rotational axis and the normal to the Earth’s plane of the ecliptic make on

average an angle of ¸ = 23ç27�, · amounts to +23ç27� and 223ç27� at summer sol-

stice (around June 21st) and winter solstice (around December 22nd), respectively.

These relations are illustrated in Figure 1.5 and in the three-dimensional view of

the Sun–Earth geometry of Figure 1.6.

The equinox points are defined as the intersecting line (equinox line) between the

Earth’s plane of the ecliptic and the Sun’s equatorial plane. A second line which is

normal to the equinox line and which is located in the Earth’s plane of the ecliptic

intersects the Earth’s orbit in the points W S (winter solstice) and SS (summer

solstice). The perihelion P and the aphelion A, which both lie on the semi-major

axis of the Earth’s elliptical orbit, make an angle Ë = 11o08� with the solstice line.
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Fig. 1.5 Relation between the Earth’s orbit, the normal vector n to the plane of the
ecliptic, the Earth’s rotational vector N and the angle of the ecliptic ¸.
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Fig. 1.6 Schematical view of the Sun–Earth geometry. P , perihelion; V E , vernal
equinox; SS, summer solstice; A, aphelion; AE , autumnal equinox; W S, winter
solstice; ¸, angle of the ecliptic; Ë , angle between the distances (SS, W S) and
(A, P); N, vector along the rotational axis of the Earth; n, normal unit vector with
respect to the Earth’s plane of the ecliptic.

It should be observed that the vector N is fixed in direction pointing to the polar

star. At the solstices the vectors N, n and the line between the solstice points lie

in the same plane so that · = ± 23o27�. At the equinox points (· = 0o) the line

between the Earth and the Sun is at a right angle to the line (SS, W S).

The solar declination · is a function of the Julian day number J . It can be

expressed as

· = 0.006918 2 0.399912 cos � + 0.070257 sin �

2 0.006758 cos 2� + 0.000907 sin 2� (1.6)

with · expressed in radians. Due to Spencer (1971) this approximate formula has

an error in · less than 12�. Figure 1.7 depicts a plot of · versus J .
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