CHEMICAL BIOPHYSICS

Quantitative Analysis of Cellular Systems

Simulation and analysis of biochemical systems is at the heart of computational and systems biology. This textbook covers mathematical and computational approaches to biochemical systems based on rigorous physical principles. Written with an interdisciplinary audience in mind, this book shows the natural connection between established disciplines of chemistry and physics and the emerging field of systems biology, enabling the reader to take an informed approach to quantitative biochemical systems analysis.

Organized into three parts, introducing the student to basic biophysical concepts before applying the theory to computational modeling and analysis through to advanced topics and current research, this book is a self-contained treatment of the subject.

- Background material this part introduces kinetics and thermodynamics of biochemical networks, providing a strong foundation for understanding biological systems and applications to well-conceived biochemical models.
- Analysis and modeling of biochemical systems topics covered include enzyme-mediated reactions, metabolic networks, signaling systems, biological transport processes, and electrophysiological systems.
- Special topics explores spatially distributed systems, constraint-based analysis for largescale networks, protein–protein interaction, and stochastic phenomena in biochemical networks.

Featuring end-of-chapter exercises, with problems ranging in scope from straightforward calculations to small computational simulation projects, this book will be suitable for advanced undergraduate or graduate level courses in systems biology, computational bioengineering, and molecular biophysics.

DANIEL A. BEARD is Associate Professor in the Department of Physiology and the Biotechnology and Bioengineering Center, Medical College of Wisconsin.

HONG QIAN is Professor of Applied Mathematics and Bioengineering at the University of Washington.

There is a growing number of physicists, engineers, mathematicians, and chemists who are interested in joining the post-genomics party and addressing cutting-edge problems in molecular and cell biology. The barrier to entry can be high and prohibitive. This marvelous new book opens the door for the quantitively inclined. Beard and Qian, in an accessible and clear style, present fundamental methods that can be used to model and analyze an array of biomolecular systems and processes, ranging from enzyme kinetics to gene regulatory networks to cellular transport. This book will appeal to autodidacts as well as professors looking for course texts.

J. J. Collins, Professor of Biomedical Engineering and MacArthur Fellow, Boston University

This is one of the most useful and readable accounts of biochemical thermodynamics that I have seen for a long time, if indeed ever. It is very definitely a book that I shall want to have on my shelves and to refer others to, because it contains a considerable amount of information not easy to find elsewhere.

Athel Cornish-Bowden, Directeur de Récherche, CNRS, Marseilles

Dan Beard and Hong Qian's *Chemical Biophysics: Quantitative Analysis of Cellular Systems* is a masterful portrayal of a critically important new area of science. The success of genomics now makes it imperative to understand the relationships between proteomics, biochemical systems behavior, and the physiology of the intact animal or human. This book provides the path. Its clarity of description, making the complexities seem simple by adhering to fundamental principles, avoiding cluttering detail while painting the broad picture to great depth, makes it a pleasure to read and a treasure to study. It's a must for scientists and scholars working to understand integrative biology.

James B. Bassingthwaighte, Professor of Bioengineering, Biomathematics and Radiology at the University of Washington, Seattle

This wonderful book will be indispensable to specialists in the fields of systems biology, biochemical kinetics, cell signaling, genetic circuits and quantitative aspects of biology, and also to undergraduate and graduate students. It presents a systematic approach to analyzing biochemical systems. The complex subjects are described in a clear style, with carefully crafted definitions and derivations. This unique book is an important step in the development and dissemination of systems biology approaches.

Aleksander S. Popel, Professor of Biomedical Engineering, Johns Hopkins University

As computational biology moves into a more integrative and multi-scale phase, to provide the quantitative framework for linking the mass of experimental data generated by molecular techniques at the subcellular level to tissue- and organ-scale physiology, it is vitally important that models are based on quantitative approaches that incorporate, wherever possible, thermodynamically constrained biophysical mechanisms. This new book *Chemical Biophysics: Quantitative Analysis of Cellular Systems* by Dan Beard and Hong Qian does a wonderful job of formulating models for metabolic pathways, gene regulatory networks, and protein interaction networks on the well-established principles of physical chemistry. Topics include enzyme-catalyzed reactions, reaction–diffusion modeling, membrane transport, the chemical master equation, and much more. This book will be of lasting value to computational biologists and bioengineers.

> Professor Peter J. Hunter, Auckland Bioengineering Institute at the University of Auckland

Metabolic modeling often contains simplified assumptions to achieve convergence of equations and these sometimes violate principles of solution physical chemistry. Readers of this remarkable monograph will no longer find those approaches satisfactory because Beard and Qian elucidate the principles of kinetics and thermodynamics of electrolyte solutions relevant to metabolic modeling and computational biology. They show how these principles are essential for molecular modeling of cellular processes most of which involve ionized molecules and macromolecules in the cytoplasm. Their exposition is rigorous. The chapters have an enormous scope and depth that present clear derivations, explanations, and examples. Beard and Qian set the bar very high for future metabolic modeling yet show how the details involved can be managed well and correctly. Analyses at this level of detail are necessary before more complex concepts of molecular crowding and intracellular compartmentalization can be considered. I expect this monograph will become a landmark in computational and systems biology and will be read thoroughly by all scholars in these fields.

> Martin J. Kushmerick, Professor of Radiology, Bioengineering, Physiology and Biophysics at the University of Washington, Seattle

Chemical Biophysics: Quantitative Analysis of Cellular Systems by Daniel Beard and Hong Qian fills a significant niche. The text is a concise yet clear exposition of the fundamentals of chemical thermodynamics and kinetics, aimed specifically at practitioners of the new science of systems biology. It is marvelously illustrated with biochemical examples that will aid those who aim to analyze and model the workings of biological cells.

David Eisenberg, Director UCLA-DOE Institute for Genomics & Proteomics, University of California, Los Angeles, Investigator, Howard Hughes Medical Institute

Cambridge Texts in Biomedical Engineering

Series Editors

W. Mark Saltzman, Yale University Shu Chien, University of California, San Diego

Series Advisors

William Hendee, Medical College of Wisconsin
Roger Kamm, Massachusetts Institute of Technology
Robert Malkin, Duke University
Alison Noble, Oxford University
Bernhard Palsson, University of California, San Diego
Nicholas Peppas, University of Texas at Austin
Michael Sefton, University of Toronto
George Truskey, Duke University
Cheng Zhu, Georgia Institute of Technology

Cambridge Texts in Biomedical Engineering provides a forum for high-quality accessible textbooks targeted at undergraduate and graduate courses in biomedical engineering. It will cover a broad range of biomedical engineering topics from introductory texts to advanced topics including, but not limited to, biomechanics, physiology, biomedical instrumentation, imaging, signals and systems, cell engineering, and bioinformatics. The series will blend theory and practice, aimed primarily at biomedical engineering students but will be suitable for broader courses in engineering, the life sciences, and medicine.

CHEMICAL BIOPHYSICS

Quantitative Analysis of Cellular Systems

DANIEL A. BEARD

Department of Physiology Medical College of Wisconsin

HONG QIAN

Department of Applied Mathematics University of Washington

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521870702

© Daniel A. Beard and Hong Qian 2008

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2008

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN 978-0-521-87070-2 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> To our wives Katie and Madeleine

and children Henry and Isabelle

Contents

	Preface			page xvii
	Introduction			1
	Computational biology			
		System	ns biology	2
		Organ	ization of this book	3
PartI Background material			5	
1	Concepts from physical chemistry			7
	1.1 Macroscopic thermodynamics			7
	1.2 Isolated systems and the Boltzmann definition of entropy		ed systems and the Boltzmann definition of entropy	9
	1.3	Closed	d isothermal systems	10
		1.3.1	Helmholtz free energy	10
		1.3.2	Entropy in an NVT system	13
		1.3.3	Interpretation of temperature in the NVT system	13
	1.4	Isothe	rmal isobaric systems	14
		1.4.1	Gibbs free energy	14
		1.4.2	Entropy in an NPT system	15
	1.5	Therm	nodynamic driving forces in different systems	15
	1.6	Applic	cations and conventions in chemical thermodynamics	16
		1.6.1	Systems of non-interacting molecules	16
		1.6.2	Gibbs free energy of chemical reactions and chemical	
			equilibrium	17
	1.7	Applic	cations of thermodynamics in biology	19
		1.7.1	Enzyme reaction mechanisms	19
		1.7.2	Electrostatic potential across a cell membrane	21
2	Conventions and calculations for biochemical systems			24
	2.1	Conve	entional notation in biochemical thermodynamics	24
	2.2	Reacta	ants and reactions in biochemistry	26

Cambridge University Press
978-0-521-87070-2 - Chemical Biophysics: Quantitative Analysis of Cellular Systems
Daniel A. Beard and Hong Qian
Frontmatter
More information

xii Contents				
		2.2.1	An example of a biochemical reactant	26
		2.2.2	An example of a biochemical reaction	28
	2.3	Effects of pH and ion binding on biochemical		
		reaction thermodynamics		
	2.4	Effects of temperature on biochemical reaction thermodynamics		
	2.5	Effect	s of ionic strength on biochemical reaction thermodynamics	35
	2.6	Treatr	nent of CO_2 in biochemical reactions	36
	2.7	pH variation in vivo		
		2.7.1	In vivo deviation from the standard state	38
		2.7.2	The bicarbonate system in vivo	38
3	Chei	mical k	inetics and transport processes	41
	3.1	Well r	nixed systems	42
		3.1.1	Differential equations from mass conservation	42
		3.1.2	Reaction thermodynamics revisited	43
		3.1.3	Reaction kinetics	45
		3.1.4	Using computers to simulate chemical kinetics	53
	3.2	Transp	port processes	58
		3.2.1	Advection	59
		3.2.2	Diffusion	60
		3.2.3	Drift	60
		3.2.4	Example: passive permeation across a membrane	61
		3.2.5	Example: coupled diffusion and drift in a membrane	62
Pa	rtII	Analy	sis and modeling of biochemical systems	67
4	Enzy	yme-cat	talyzed reactions	69
	4.1	Simpl	e Michaelis–Menten reactions revisited	70
		4.1.1	Steady state enzyme turnover kinetics	70
		4.1.2	Reversible Michaelis–Menten kinetics	73
		4.1.3	Non-equilibrium steady states and cycle kinetics	74
	4.2	Transi	ent enzyme kinetics	76
		4.2.1	Rapid pre-equilibrium	76
		4.2.2	A singular perturbation approach to	
		-	Michaelis–Menten kinetics	78
	4.3	Enzyn	ne with multiple binding sites: cooperativity	81
		4.3.1	Sigmoidal equilibrium binding	81
		4.3.2	Cooperativity in enzyme kinetics	82
		4.3.3	The Hill coefficient	83
		4.3.4	Delays and hysteresis in transient kinetics	84
	4.4	Enzyn	natic fluxes with more complex kinetics	86
		4.4.1	Reciprocal of flux: the mean time of turnover	87

Cambridge University Press	
978-0-521-87070-2 - Chemical Biophysics: Quantitative Analysis of Cellular Systems	3
Daniel A. Beard and Hong Qian	
Frontmatter	
More information	

			Contents	xiii
		4.4.2	The method of King and Altman	89
		4.4.3	Enzyme-catalyzed bimolecular reactions	92
		4.4.4	Example: enzyme kinetics of citrate synthase	96
5	Bio	chemica	al signaling modules	105
	5.1	Kineti	ic theory of the biochemical switch	105
		5.1.1	The phosphorylation–dephosphorylation cycle	108
		5.1.2	Ultrasensitivity and the zeroth-order	
			phosphorylation-dephosphorylation cycle	111
		5.1.3	Substrate selectivity of the	
			phosphorylation-dephosphorylation switch	113
		5.1.4	The GTPase signaling module	115
		5.1.5	Duration of switch activation and a biochemical timer	117
		5.1.6	Synergistic action of kinases and phosphatases and	
			the phosphorylation energy hypothesis	121
	5.2	Bioch	emical regulatory oscillations	122
		5.2.1	Gene regulatory networks and the repressilator	122
		5.2.2	Biochemical oscillations in cell biology	125
6	Bio	chemica	al reaction networks	128
	6.1	Forma	al approach to biochemical reaction kinetics	129
		6.1.1	Establishing the components of the biochemical	
			network model	129
		6.1.2	Determining expressions for biochemical fluxes for	
			the reactions	131
		6.1.3	Determining the differential equations	132
		6.1.4	Computational implementation and testing	137
	6.2	Kineti	ic model of the TCA cycle	140
		6.2.1	Overview	140
		6.2.2	Components of the TCA cycle reaction network	140
		6.2.3	Flux expressions for TCA cycle reaction network	143
		6.2.4	Differential equations for TCA cycle reaction network	152
	()	6.2.5	Simulation of TCA cycle kinetics	153
	6.3	Contro	ol and stability in biochemical networks	155
		6.3.1	Linear analysis near a steady state	156
7	C	6.3.2	Metabolic control analysis	15/
/			ochemical systems and memorane transport	162
	/.1	1 rans]	A ative versus messive transport	162
		7.1.1 7.1.2	Active versus passive transport	103
	7 2	7.1.2 Trans	Examples, a uniporter and an antiporter	103
	1.2	11ans]	Thermodynamics of charged species transport	108
		1.2.1	r nermouynamics of charged species transport	108

ambridge University Press	
78-0-521-87070-2 - Chemical Biophysics: Quantitative Analysis of Cellular Systems	5
aniel A. Beard and Hong Qian	
rontmatter	
Iore information	

xiv	V	Contents		
		7.2.2	Electrogenic transporters	170
	7.3	Electr	ophysiology modeling	172
		7.3.1	Ion channels	172
		7.3.2	Differential equations for membrane potential	173
		7.3.3	The Hodgkin–Huxley model	174
	7.4	Large	-scale example: model of oxidative ATP synthesis	178
		7.4.1	Model of oxidative phosphorylation	180
		7.4.2	Model behavior	187
		7.4.3	Applications to in vivo systems	188
Pa	rtIII	Specia	al topics	193
8	Spat	ially di	stributed systems and reaction-diffusion modeling	195
	8.1	Diffus	sion-driven transport of solutes in cells and tissue	195
		8.1.1	The diffusion equation: assumptions and applications	196
		8.1.2	Oxygen transport to tissue and the Krogh–Erlang	
			model	197
		8.1.3	Facilitated diffusion	203
	8.2	Advec	ction-diffusion modeling of solute transport in tissues	209
		8.2.1	Axially distributed models of blood-tissue exchange	211
		8.2.2	Analysis of solute transport in organs	214
		8.2.3	Whole-organ metabolic modeling	216
	8.3	Three	-dimensional modeling	216
9	Con	straint-	based analysis of biochemical systems	220
	9.1	Mot ₁ v	ation for constraint-based modeling and analysis	221
	9.2	Mass-	balance constraints	221
		9.2.1	Mathematical representation for flux balance	001
		0.0.0	analysis	221
	0.2	9.2.2	Energy metabolism in <i>E. coli</i>	223
	9.3	Thern	nodynamic constraints	227
		9.3.1	The basic idea	228
		9.3.2		230
	0.4	9.3.3 Example	Feasible sign patterns	232
	9.4		Eastible concepts in constraint-based analysis	234
		9.4.1	Piechemical conductance and enzyme activity	234
		9.4.2	Concerned metabolite pools	233
		9.4.J	Riological objective functions and optimization	255
		7.4.4 0 / 5	Metabolic engineering	230 229
		9. 4 .5 0/1/6	Incorporating metabolic control analysis	230 238
10	Bior	7.4.0 nacrom	incorporating incluour control analysis	230 240
10	101	Protei	n structures and α_{-} helices	240 241
	10.1 Trotem structures and u-nences			241

Cambridge University Press	
78-0-521-87070-2 - Chemical Biophysics: Quantitative Analysis of Cellular System	s
Daniel A. Beard and Hong Qian	
Frontmatter	
Aore information	

Contents	XV
10.1.1 The theory of helix-coil transition	242
10.2 Protein filaments and actin polymerization	248
10.2.1 Nucleation and critical monomer concentration	249
10.2.2 Theory of nucleation-elongation of actin polymerization	250
10.3 Macromolecular association	252
10.3.1 A combinatorial theory of macromolecular association	252
10.3.2 Statistical thermodynamics of association	256
10.4 A dynamics theory of association	257
10.4.1 Transition-state theory and rate constants	259
11 Stochastic biochemical systems and the chemical master equation	261
11.1 A brief introduction to the chemical master equation	262
11.2 Essential materials from probability theory	265
11.2.1 The law of large numbers	265
11.2.2 Continuous time Markov chain	265
11.3 Single molecules and stochastic models for unimolecular	
reaction networks	267
11.3.1 Rate equations for two-state conformational change	267
11.3.2 Michaelis–Menten kinetics of single enzymes	270
11.4 Non-linear biochemical reactions with fluctuations	271
11.4.1 Chemical master equation for Michaelis–Menten kinetics	271
11.4.2 A non-linear biochemical reaction system with	
concentration fluctuations	273
11.4.3 Bistability and non-equilibrium steady state	276
11.4.4 Stochastic simulation of the CME	276
11.5 The CME model for protein synthesis in a single cell	278
12 Appendix: the statistical basis of thermodynamics	282
12.1 The NVE ensemble	282
12.2 The NVT ensemble	287
12.2.1 Boltzmann statistics and the canonical partition	
function: a derivation	287
12.2.2 Another derivation	288
12.2.3 One more derivation	289
12.2.4 Equipartition	291
12.3 The NPT ensemble	293
Bibliography	296
Index	307

Preface

The life sciences have strong traditions as quantitative disciplines. In several fields quantitatively minded research was at a zenith in the 1960s and 1970s. Flick through, for example, chapters of the American Physiological Society's *Handbook of Physiology* that were published in this era (and even into the 1980s) and one will see physiology revealed as an engineering science, applying the tools of chemical, mechanical, and electrical engineering to measure, analyze, and simulate biological systems. A great deal of biochemical research in the 1960s and 1970s was focused on the kinetics, thermodynamics, and generally physical chemistry of biochemical systems. From this work emerged an interdisciplinary field sometimes called *biophysical chemistry*, which encompasses a collection of physical and mathematical methods for analyzing molecular structure and dynamics.

This great era of quantitative physiology and biochemistry was temporarily sidetracked by revolutions in molecular biology and molecular genetics, which, at risk of oversimplification, are focused on the question of what is there (inside a cell) rather than how it works. In the 1980s and 1990s much of the physically oriented quantitative research in biology was similarly focused on isolated molecules. In the 1990s the term *molecular biophysics* arose as a popular name of new departments combining experimental techniques with theory and simulation, emphasizing physicochemical approaches to studying biological macromolecules.

Nowadays, with several genomes sequenced and large amounts of data available on what molecules are present in what quantities and inside what sorts of cells, attention is shifted to the question of how it all works. The new focus is sometimes called *systems biology*. Whatever we call it, although a number of recent publications would have the reader believe that *systems biology* is an entirely new endeavor, the basic idea of pursuing quantitative mechanistic-based understanding of how biological systems function is a shift back to the philosophy of a previous era.

xviii

Preface

Of course we should not imply that progress in biological systems analysis ever ceased or that the current trend calls for a wholesale abandonment of reductionist approaches in favor of integrative systems analysis. Yet it is obvious to even the casual browser of the headlines of the science magazines that, in some form or another, systems analysis in biology is in the spotlight for now and at least the foreseeable future. At the heart of a systems approach to biology is a recognition of the importance of dynamic behavior (and function) of a system (a cell, an organ, or an organism) emerging from the interaction of its components. Moreover, computational modeling and simulation is centrally important to analysis of such systems.

While it is in the context of this newfound attention on quantitative and computational biology that we hope this book is useful, some readers may find some of the content old fashioned. A student planning a career in systems biology may wonder whether our emphasis on the physical chemical basis of natural phenomena looks backward or forward. This text represents an attempt to do both in synthesizing a basic foundation in *chemical biophysics* for analysis and simulation of cellular systems. The title of the book, yet another permutation of phys-, chem-, bio-, and related syllables, arises from this desire to continue the rigorous tradition while at the same time define something new.

We are fortunate to have been mentored by a number of leading scientists, including James Bassingthwaigthe, Elliot Elson, Carl Frieden, John Hopfield, James Murray, John Schellman, and Tamar Schlick. In particular we have both benefited a great deal from our long-time association with Jim Bassingthwaigthe. His advice and inspiration is at the root of much of what we have endeavored to do, including writing this book. In addition, we owe a particular debt to Athel Cornish-Bowden who gave us advice, both specific and general, and encouragement on the text. His book on enzyme kinetics sets the standard for clarity that we can only strive for. These two books, perhaps together with one that emphasizes molecular biophysics, could provide appropriate material for a year-long sequence on biophysical chemistry, from macromolecules to biochemical systems. On its own, this book has been used for a semester-long course on computational biology.

Many others provided feedback on the text, discovered typos and errors, and suggested improvements. We are grateful particularly to Xuewen Chen, Ranjan Dash, Ed Lightfoot, Clark Miller, Luis Moux-Dominguez, Feng Qi, Rebecca Vanderpool, Kalyan Vinnakota, Fan Wu, and Feng Yang.