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1 Introduction

The Autoregressive Conditional Heteroskedasticity (ARCH) model was
introduced by Engle (1982). In this model the conditional variance of the
errors is assumed to be a function of the squared past errors. Engle derives
the Maximum Likelihood (ML) estimator for the ARCH model under
the assumption that the conditional density of the error term is normal.
Bollerslev (1986), suggested the Generalized Autoregressive Conditional
Heteroskedasticity model (GARCH) in which the conditional variance
of the errors is assumed to be a function of its lagged values and the
squared past errors. Bollerslev derives the Maximum Likelihood (ML)
estimator for the GARCH model under the assumption that the con-
ditional density of the error term is normal. The ARCH and GARCH
models are useful in modelling economic phenomena, mainly in the the-
ory of finance (see e.g., Bollerslev et al. 1992 and Engle, 2002). In the
above models the conditional density of the error term is assumed to
be normal but in the applications with actual data, distributions other
than the normal have been observed with fatter tails or with skewness
significantly different from zero. For this reason, in particular applica-
tions with real data, other distributions have been used. Bollerslev (1987)
used the Student’s t distribution to model the monthly returns composite
index. Baillie and Bollerslev (1989) also used the Student’s t distribution
while Hsieh (1989) chose the mixture Normal–Lognormal to model daily
foreign-exchange rates. Jorion (1988) employed a mixture distribution
of Normal–Poisson to model the foreign exchange and stockmarkets.
Hansen (1993) used the skewed Student’s t with a shape parameter,
which may vary over time, to model exchange rates. Peruga (1988)
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2 Conditional Heteroskedasticity Models with Pearson Disturbances

found empirical evidence of high skewness and kurtosis in exchange rates,
and so on.

As an alternative approach, instead of using a specific distribution for
the error term structure, non-parametric and semi-parametric techniques
have been used to approximate the true error density. A Gaussian kernel
was used in Pagan and Hong (1991) to model the risk premium. Pagan
and Schwert (1990) again use a Gaussian kernel and include in the vari-
ance specification a Fourier transformation to model the stockmarket
volatility. A Gaussian kernel was used in Sentana and Wadhwani (1991)
to model stockmarket returns. Engle and Gonzalez-Rivera (1991) use a
semi-parametric technique developed byTapia andThompson (1978) to
model the exchange rate between the British pound and the US dollar.
Tzavalis and Wickens (1995) use Cram–Charlier polynomials in order
to incorporate in the model additional information for skewness and
kurtosis, and so on. For a review of the Autoregressive Conditional
Heteroskedasticity models, theory and applications, see Bollerslev et al.
(1992), Bollerslev et al. (1994), Engle (2002).

Moreover, Magdalinos and Mitsopoulos (2003) use the Pearson
System of Distributions (PSD) (see Eldetron and Johnson, 1969; Kendall
and Stuart, 1977 and Johnson and Kotz, 1970) in order to approximate
the error density in the case of the linear regression model. Here, we
extend the use of the PSD for the case of the ARCH and GARCH models.
The PSD includes a wide range of distributional shapes (such as Normal,
Beta, Gamma, etc.), and is parsimoniously parameterized in terms of
its first four cummulants. This is very convenient, as in practical cases
it is unlikely to obtain reliable sample information for the higher-order
cummulants. The definition of PSD is given in terms of the derivative of
the log-density function. This implies that the score vector correspond-
ing to the ARCH or GARCH models can be derived without the explicit
identification of the error distribution.

The rest of the chapter is organized as follows. In section 2 we assume
that the true error density belongs to the PSD and derive the one-step
scoring estimator for the unknown parameters of the GARCH model.
In section 3 we present an experimental study of the properties of the
proposed estimator, while remarks and conclusions are presented in the
concluding section 4.

2 GARCH with Pearson Family Disturbances

Let yt , (t = 1, . . ., T ) be an observable random variable, x′
t =

(1, x1t , . . ., xnt), (t = 1, . . ., T ), be a vector of the regressors and b be the
n × 1 vector of unknown parameters. Also, let Dt be the information set
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Michael A. Magdalinos and George P. Mitsopoulos 3

available at time t and σ (xt) be the information set containing the infor-
mation for the contemporaneous regressors. Using these information
sets, define 
t = σ {σ (xt) ∪ Dt−1} as the information set containing the
information from the contemporaneous regressors and all the past infor-
mation. Moreover, let ht be the conditional variance of the error term,
which is a stochastic process and ϕ(·) the conditional density of yt on 
t .

The above model may be written as

yt
∣∣ 
t ∼ ϕ(x′

tb, ht). (1)

Given the model (1), we assume that the conditional variance ht is
a stationary process. Then the Wold Decomposition Theorem (see e.g.,
Priestley, 1981, p. 756) implies that ht can be expressed as a summable
MA(∞) process, that is, in the form

ht = α0 +
∞∑

i=1

αiε
2
t−i ,

∞∑
i=1

α2
i < ∞ (2)

where εt is a white-noise process.This can be seen as a direct extension of
the fact that an element of a linear space can be expressed in terms of an
orthogonal basis. The choice of the basis, however, is arbitrary. Here we
choose a positive basis to emphasize the fact that the conditional variance
ht is non-negative.

If we impose in (2) the following restrictions

αp+1 = αp+2 = αp+3 = · · · = 0 (3)

then the representation (2) provides the theoretical foundation for the
ARCH(p) model. Assumption (3) means that the conditional variance ht
is independent of the information p+i, (i = 1, 2, . . .), periods in the past.

If assumption (3) cannot be made, or if p is relatively large, then
a more parsimonious parameterization can be obtained as follows.
The representation (2) can be written as

ht = A(L)ε2
t , A(L) =

∞∑
i=0

αiLi (4)

where L is the lag operator. Dhrymes (1971) shows that the linear space
of the lag operators of the form

A(L) =
∞∑

i=0

αiLi ,
∞∑

i=0

α2
i < ∞ (5)
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4 Conditional Heteroskedasticity Models with Pearson Disturbances

is isomorphic to the space of real polynomials

A(x) =
∞∑

i=0

αixi , x ∈ R,
∞∑

i=0

α2
i < ∞. (6)

This means that the properties of the two spaces are the same, so that a
theorem that holds in one space is also valid in the other. It is well-known
(see e.g., Bultheel, 1987, p. 36) that the polynomial (6) is approximated
equally well by a Pade approximation of the form

R(x) = Ap(x)
1 − Bq(x)

, Ap(x) =
p∑

i=1

αixi , Bq(x) =
q∑

j=1

βj x j (7)

for finite values of p and q.
Hence we can approximate (2) by

ht = δ + R(L)ε2
t = δ + Ap(L)

1 − Bq(L)
ε2

t

or

[
1 − Bq(L)

]
ht = δ

[
1 − Bq(L)

] + Ap(L)ε2
t (8)

that is, the GARCH(p, q) representation

ht = α0 +
p∑

i=1

αiε
2
t−i +

q∑
j=1

βj ht−j (9)

where α0 = δ
[
1 − Bq(L)

] = δ(1 − β1 − β2 − · · · − βq).
Now consider the GARCH( p, q) model that is defined by (1) and (9).

The error term of this model is

εt = yt − x′
tb (10)

where it is assumed that the density of εt is g(εt).
It is more convenient to work with the standardized residuals

ut = h−1/2
t εt (11)

and assume that the density of ut is f (ut).
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Michael A. Magdalinos and George P. Mitsopoulos 5

The conditional variance ht that is defined in (9) may be written as

ht = α0 + α1ε2
t−1 + · · · + αpε

2
t−p + β1ht−1 + · · · + βqht−q = ξ ′

t ω (12)

where

ξ ′
t =

(
1, ε2

t−1, . . ., ε2
t−p, ht−1, . . ., ht−q

)
ω′ = (

α0, α1, . . ., αp, β1, . . ., βq
) = (

α′, β ′) .

Moreover let the shape (nuisance) parameters of the density f (u) of ut
be γ ′ = (γ1, γ2) where γ1 and γ2 are the skewness and kurtosis coefficients
respectively.

We assume that the unknown density f (ut), of the disturbances ut ,
belongs to the PSD. Since ut are standardized, the equation defining the
PSD can be written as

d log f (u)
du

= u − c1

c1u + c2(u2 − 3) − 1
≡ η(u) (13)

where

c1 =−γ1(γ2+6)/A, c2 =−
(
2γ2−3γ 2

1

)/
A, A=10γ2−12γ 2

1 +12.

Substituting in (13) for c1, c2 we find

η(u) = γ1(γ2 + 6) + 2(5γ2 + 6γ 2
1 + 6)u

3γ 2
1 − 4(γ2 + 3) − γ1(γ2 + 6)u − (2γ2 − 3γ 2

1 )u2
. (14)

For the GARCH( p, q) model (1), (9), (11), the conditional density of
yt is defined as

ϕ( yt | 
t) = 1

h1/2
t

f (ut) (15)

and the log-likelihood function for the tth observation is

�t(θ) = −1
2

log ht + log f (ut) (16)

where θ ′ = (b′, ω′) = (b′, α′, β ′) the set of the unknown parameters.
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6 Conditional Heteroskedasticity Models with Pearson Disturbances

So that the conditional log-likelihood function for all observation is

L(θ) =
T∑

t=1

(
−1

2
log (ht) + log f (ut)

)
. (17)

The log-likelihood function (16) depends on the functional form of the
density f (u) which includes the unknown shape parameters γ . However,
if we assume that the shape parameters γ are known, then using (16)
we can define the score vector, corresponding to the mean and variance
parameters, for the tth observation, st(θ), as

st(θ) = ∂�t(θ)
∂θ

= − 1
2ht

∂ht

∂θ
+ ∂ log f (ut)

∂ut

∂ut

∂θ

= − 1
2ht

∂ht

∂θ
+ η(ut)

∂ut

∂θ
. (18)

Since θ ′ = (b′, ω′) we obtain from (18)

st(b) = ∂�t(θ)
∂b

= − 1
2ht

∂ht

∂b
+ η(ut)

∂ut

∂b
(19)

st(ω) = ∂�t(θ)
∂ω

= − 1
2ht

∂ht

∂ω
+ η(ut)

∂ut

∂ω
(20)

where the derivatives of ut with respect to b and ω are

∂ut

∂b
= − 1

h1/2
t

xt − ut

2ht

∂ht

∂b
(21)

∂ut

∂ω
= − ut

2ht

∂ht

∂ω
. (22)

Substituting (21) in (19) and (22) in (20) we obtain for the score vector

st(b) = −η(ut)
2ht

xt − 1
2ht

(η(ut)ut + 1)
∂ht

∂b
(23)

st(ω) = − 1
2ht

(η(ut)ut + 1)
∂ht

∂ω
(24)
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Michael A. Magdalinos and George P. Mitsopoulos 7

where

∂ht

∂b
= −

p∑
i=1

αiεt−ixt−i +
q∑

i=1

βi
∂ht−i

∂b
(25)

∂ht

∂ω
= zt +

q∑
i=1

βi
∂ht−i

∂ω
. (26)

The Full Information Maximum Likelihood estimation of all the
unknown parameters θ and γ is impossible, since the exact functional
form of the density f (u) is unknown. For this reason the following
estimation procedure is used.

Assume some initial consistent estimates θ̂ for the set of the unknown
parameters θ ; these estimates may come from the application of the QML
as defined in Bollerslev andWooldridge (1992). Using these estimates we
can estimate the residuals ε̂t , the variance ĥt and the standardized resid-
uals ût = ε̂t /ĥ1/2

t . The shape parameters γ ′ = (γ1, γ2) may be estimated
consistently from the standardized residuals ût as

γ̂1 = 1
T

T∑
t=1

û3
t , γ̂2 = 1

T

T∑
t=1

û4
t − 3.

Lastly, by using θ̂ , γ̂ , ε̂t , ût , ĥt we can define the one-step scoring
estimator for the unknown parameters θ as

θ̃ = θ̂ + kĉ (27)

where

ĉ =
( T∑

t=1

st(θ̂)st(θ̂)′
)−1 T∑

t=1

st(θ̂) (28)

is the correction vector and the constant k ∈ (0, 1).
The correction vector (28) may be easily calculated from the regression

of a vector m with all elements equal to one on a matrix Z with rows

zt =
(
st(b̂), st(α̂), st(β̂)

)
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8 Conditional Heteroskedasticity Models with Pearson Disturbances

so will be

ĉ = (Z ′Z)−1Z ′m. (29)

We shall refer to θ̃ as the Pearson Improved (PI) estimator for the case
of the GARCH(p, q) model (1), (12). If q = 0 then the GARCH(p, q)
model reduces to the ARCH(p) model and the estimator (27) will be the
Pearson Improved (PI) estimator for the ARCH(p) model.

The use of γ̂ in the estimation procedure can affect the efficiency of
the estimator.The PI estimator would be fully efficient only in the special
case of full adaptation. In the case considered here the PI estimator is
not fully adaptive, since the conditions for adaptivity as they are cited in
Bickel (1982) and Manski (1984) are not valid. On the other hand the
proposed estimator is adaptive in the case of the simple GARCH model
introduced by Gonzalez-Rivera and Racine (1995), since the conditions
for successful adaptation cited therein are valid for our case.

3 Sampling Experiments

To examine the relative efficiency of the proposed estimator Monte Carlo
experiments were carried out. To generate the data we used the same
model as in Engle and Gonzalez-Rivera (1991), that is

yt = b1yt−1 + b2yt−2 + et ,

et = h1/2
t ut ,

ht = α0 + α1e2
t−1 + α2e2

t−2 + β1ht−1, (30)

b1 = 0.5, b2 = 0.15,

α0 = 0.1, α1 = 0.1, α2 = 0.2, β1 = 0.6.

The disturbance term ut was generated from one of the distributions
that are given in Tables 1.1 and 1.2.

First, we generate an independent sample of random numbers, say vt ,
for each of the distributions in Tables 1.1 and 1.2. Second, we transform
each random sample so that it has zero mean and variance one (where it
is needed), that is

ut = (vt − µd)/σd

where µd is the mean and σd is the standard deviation of each distribution
in Tables 1.1 and 1.2.
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Michael A. Magdalinos and George P. Mitsopoulos 9

Table 1.1. Distributions that belong to the PSD, with finite γ ′s

Distribution µd σd γ1 γ2

1. N(0,1) Standard Normal 0.000 1.000 0.000 0.000
2. t(5) Student t with v = 5 d.f. 0.000 1.291 0.000 6.000
3. B(0.5,3) Beta with parameters a = 0.5, b = 3 0.143 0.165 1.575 2.224
4. B(4,2) Beta with parameters a = 4, b = 2 0.667 0.178 −0.468 −0.375
5. G(0.5,1) Gamma with parameters a = 0.5, b = 1 0.500 0.707 2.828 12.000
6. G(5,2) X2, Chi square with v = 10 d.f. 10.000 4.472 0.894 1.200
7. F(2,9) Fisher F with v1 = 2 and v2 = 9 d.f. 1.286 1.725 5.466 146.444

Table 1.2. Distributions that belong to the PSD, with no finite γ ′s
or do not belong to the PSD

Distribution µd σd γ1 γ2

1. t(5) Student t with v = 3 d.f. 0.000 1.732 — —
2. LN(0,1) LogNormal, the distribution of exp(z),

where z is distributed as N(0, 1)
1.649 2.161 6.185 110.936

3. W (2,1) Weibull with parameters a = 2, b = 1 0.886 0.463 0.631 0.245
4. W (8,2) Weibull with parameters a = 8, b = 2 1.027 0.152 −0.534 0.328
5. VCN Variance Contaminated Normal

0.9N(0, 0.1) + 0.1N(0, 9)
0.000 0.995 0.000 21.821

6. BSM Bimodal Symmetric Mixture of two
Normals, 0.5N(−3, 1) + 0.5N(3, 1)

0.000 3.162 0.000 −1.620

Then using the model described by relations (30), we recursively gen-
erate the variable yt . To avoid starting problems we generate for yt
10 percent more observations than are required for each sample size and
then reject the first 10 percent of the generated observations.

For each distribution consider samples of T = 500, 1000, 2000 which
gives a total of 39 experiments. Each experiment consists of 5,000 repli-
cations and is executed by a double precision Fortran program. The
pseudo-random numbers were generated by NAG/WKSTN subroutines
and by (tested) subroutines written by the authors.

The estimation procedure is the following.
First, estimate the parameters θ ′ = (b1, b2, α0, α1, α2, β1) by using the

QML procedure, as it is described in Bollerslev and Wooldridge (1992).
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10 Conditional Heteroskedasticity Models with Pearson Disturbances

That is, maximize the log-likelihood function (17) by using the iterative
procedure based on the Berndt et al. (1974) (BHHH) algorithm. The
convergence criterion used in the BHHH updating regression was
R2 < 0.001. Second, use the QML estimates for the parameters θ to
calculate the residuals ε̂t , the variance ĥt , the standardized residuals
ût and the shape parameters γ̂1, γ̂2. Using these estimates construct
the matrix Z and apply (29) to obtain the improvement vector ĉ.
Third, as in Magdalinos and Mitsopoulos (2003), calculate the constant
k = (1/exp(‖c‖))2, where ‖c‖ is the Euclidian norm of the improvement
vector (29). Lastly, by applying (27), obtain the PI estimator for the
parameters θ .

Moreover, as in Engle and Gonzalez-Rivera (1991), we transform the
residuals ût in order to have mean 0 and variance 1 (where it is needed)
and following the above steps produce the PIs estimator.

For each distribution we produce Monte Carlo estimates of the Bias
and the Standard Deviation (StDev) of the QML estimator and of the
estimators PI and PIs. Moreover, the efficiency gains of the proposed
estimators were calculated by using the following formula

Efficiency Gains = 1− StDevi

StDevQML
, i = PI , PIs

The results for the parameter Bias, Standard Deviation and the esti-
mates of the efficiency gains are presented in the Tables 1.3 through
1.8. Moreover, Figures 1.1 through 1.6 illustrate the estimates for the
efficiency gains.

As expected, the variability of the estimators in terms of standard
deviation decreases as the sample size increases from T = 500 to
T = 2000. More analytically, the performance of the QML estimator
varies across error distributions and seems to depend on the kurtosis
coefficient of the error distribution.The highest standard deviation of the
QML estimator is observed in the cases of the distributions LN(0,1) and
F(2,9); these distributions also present the highest kurtosis (see Tables
1.1 and 1.2). In the case of the distributionsVCN, G(0.5,1) t(5),B(0.5,3)
and G(5,2), where γ2 > 1, the QML estimator shows a higher stan-
dard deviation than in the case of the distributions W (8,2), W (2,1) and
B(4,2), where γ2 < 1. The standard deviation of the last distributions
varies around that of the N(0,1) distribution which is the ideal case for
the QML estimator. Moreover, the QML estimator performs well in the
case of the t(3)distribution which has no definite skewness and kurtosis
and in the case of the BSM distribution which is bimodal.
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