IMPLICIT LARGE EDDY SIMULATION

The numerical simulation of turbulent flows is a subject of great practical importance to scientists and engineers. The difficulty in achieving predictive simulations is perhaps best illustrated by the wide range of approaches that have been developed and are still being used by the turbulence modeling community. In this book the authors describe one of these approaches: implicit large eddy simulation (ILES). ILES is a relatively new approach that combines generality and computational efficiency with documented success in many areas of complex fluid flow. This book synthesizes the current understanding of the theoretical basis of the ILES methodology and reviews its accomplishments. Here ILES pioneers and lead researchers combine their experience to present the first comprehensive description of the methodology. This book should be of fundamental interest to graduate students, basic research scientists, and professionals involved in the design and analysis of complex turbulent flows.

Fernando F. Grinstein and Len G. Margolin are theoretical and computational physicists in the Applied Physics Division of Los Alamos National Laboratory.

William J. Rider is theoretical and computational physicist in the Computational Physics Research and Development Department of Sandia National Laboratories.
To our parents,
our wives, Julia, Holly, and Felicia,
our children, Frederic, Rachel, and Jackson,
and the many contributors to this volume.
Implicit Large Eddy Simulation

COMPUTING TURBULENT FLUID DYNAMICS

Edited by

FERNANDO F. GRINSTEIN
Los Alamos National Laboratory

LEN G. MARGOLIN
Los Alamos National Laboratory

WILLIAM J. RIDER
Sandia National Laboratories
Contents

Preface
List of Acronyms
List of Contributors
Introduction

Fernando F. Grinstein, Len G. Margolin, and William J. Rider

SECTION A. MOTIVATION

1 More for LES: A Brief Historical Perspective of MILES
Jay P. Boris

2 A Rationale for Implicit LES
Fernando F. Grinstein, Len G. Margolin, and William J. Rider

SECTION B. CAPTURING PHYSICS WITH NUMERIC

3 Subgrid-Scale Modeling: Issues and Approaches
Pierre Sagaut

4 Numerics for ILES
a. Limiting Algorithms
Dimitris Drikakis and Marco Hahn, Fernando F. Grinstein and Carl R. DeVore, Christer Fureby and Mattias Liefvendahl, and David L. Youngs

b. The PPM Compressible Gas Dynamics Scheme
Paul R. Woodward

c. The Lagrangian Remap Method
David L. Youngs

d. MPDATA
Piotr K. Smolarkiewicz and Len G. Margolin

e. Vorticity Confinement
John Steinhoff, Nicholas Lynn, and Lesong Wang

5 Numerical Regularization: The Numerical Analysis of Implicit Subgrid Models
Len G. Margolin and William J. Rider
vi CONTENTS

6 Approximate Deconvolution 222
Nikolaus A. Adams, S. Hickel, and J. A. Domaradzki

SECTION C. VERIFICATION AND VALIDATION

7 Simulating Compressible Turbulent Flow with PPM 245
David H. Porter and Paul R. Woodward

8 Vortex Dynamics and Transition to Turbulence in Free Shear Flows 265
Fernando F. Grinstein

9 Symmetry Bifurcation and Instabilities 292
Dimitris Drikakis

10 Incompressible Wall-Bounded Flows 301
Christer Fureby, Mattias Liefvendahl, Urban Svennberg, Leif Persson, and Tobias Persson

11 Compressible Turbulent Shear Flows 329
Christer Fureby, Doyle D. Knight, and Marco Kupiainen

12 Turbulent Flow Simulations Using Vorticity Confinement 370
John Steinhoff, Nicholas Lynn, Wenren Yonghu, Meng Fan, Lesong Wang, and Bill Dietz

13 Rayleigh–Taylor and Richtmyer–Meshkov Mixing 392
David L. Youngs

SECTION D. FRONTIER FLOWS

14 Studies of Geophysics 413
Piotr K. Smolarkiewicz and Len G. Margolin

15 Using PPM to Model Turbulent Stellar Convection 439
David H. Porter and Paul R. Woodward

16 Complex Engineering Turbulent Flows 470
Niklas Alin, Magnus Berglund, Christer Fureby, Eric Lillberg, and Urban Svennberg

17 Large-Scale Urban Simulations 502
Gopal Patnaik, Fernando F. Grinstein, Jay P. Boris, Ted R. Young, and Oskar Parmhede

18 Outlook and Open Research Issues 531
Fernando F. Grinstein, Len G. Margolin, and William J. Rider

Index 543
Preface

This book represents the combined efforts of many sponsors. Most of the basic planning and organization was carried out while one of us (F. F. Grinstein) was the 2003–2004 Orson Anderson Distinguished Visiting Scholar at the Institute for Geophysics and Planetary Physics (IGPP) at Los Alamos National Laboratory (LANL). It is very important that we acknowledge the critical role played by the implicit large eddy simulation (ILES) workshops at LANL in January and November of 2004. These workshops took place under the auspices of IGPP and with partial support from the Center for Nonlinear Studies at LANL. They provided us with an ideal forum to meet and exchange ILES views and experiences, and to extensively discuss their integration within the book project. At the personal level, special thanks go to IGPP’s Gary Geernaert and to the U.S. Naval Research Laboratory’s (NRL’s) Jay Boris and Elaine Oran for their continued encouragement and support. Last but not least, continued support of F. F. Grinstein’s research on ILES during his tenure at NRL from the U.S. Office of Naval Research through NRL and from the U.S. Department of Defense High-Performance Computing Modernization Program is also greatly appreciated.

This book has evolved far beyond the early plan of merely putting together a collection of review papers on ILES authored by the lead researchers in the area. Several very useful collaborations have quite spontaneously occurred in the process of integrating the material, and we now have an active ILES working group that is focusing on a variety of timely research projects.

Much of the work on ILES reported here was accomplished despite the lack of acceptance and support of the turbulence modeling community. We hope that our readers will recognize the quality of these results and will be encouraged to do their own experiments and evaluations.

Fernando F. Grinstein, Len G. Margolin, and William J. Rider
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALE</td>
<td>Arbitrary Lagrangian Eulerian</td>
</tr>
<tr>
<td>AMR</td>
<td>Adaptive Mesh Refinement</td>
</tr>
<tr>
<td>BBC</td>
<td>code name</td>
</tr>
<tr>
<td>CFD</td>
<td>Computational Fluid Dynamics</td>
</tr>
<tr>
<td>CV</td>
<td>Control Volume</td>
</tr>
<tr>
<td>DES</td>
<td>Detached Eddy Simulation</td>
</tr>
<tr>
<td>DNS</td>
<td>Direct Numerical Simulation</td>
</tr>
<tr>
<td>ENO</td>
<td>Essentially Non-Oscillatory</td>
</tr>
<tr>
<td>ENZO</td>
<td>code name</td>
</tr>
<tr>
<td>EULAG</td>
<td>code name</td>
</tr>
<tr>
<td>EV</td>
<td>Eddy Viscosity</td>
</tr>
<tr>
<td>FCT</td>
<td>Flux-Corrected Transport</td>
</tr>
<tr>
<td>FLASH</td>
<td>code name</td>
</tr>
<tr>
<td>FLIC</td>
<td>Fluid in Cell</td>
</tr>
<tr>
<td>FV</td>
<td>Finite Volume</td>
</tr>
<tr>
<td>ILES</td>
<td>Implicit LES</td>
</tr>
<tr>
<td>KH</td>
<td>Kelvin-Helmholtz</td>
</tr>
<tr>
<td>KRAKEN</td>
<td>code name</td>
</tr>
<tr>
<td>LES</td>
<td>Large-Eddy Simulation</td>
</tr>
<tr>
<td>MEA</td>
<td>Modified Equation Analysis</td>
</tr>
<tr>
<td>MILES</td>
<td>Monotone (or Monotonically) Integrated LES</td>
</tr>
<tr>
<td>MM</td>
<td>Mixed Model</td>
</tr>
<tr>
<td>MPDATA</td>
<td>Multidimensional Positive Definite Advection Transport Algorithm</td>
</tr>
<tr>
<td>MUSCL</td>
<td>Monotonic Upstream-Centered Scheme for Conservation Laws</td>
</tr>
<tr>
<td>NFV</td>
<td>Non-Oscillatory Finite Volume</td>
</tr>
<tr>
<td>NSE</td>
<td>Navier-Stokes Equations</td>
</tr>
<tr>
<td>ODE</td>
<td>Ordinary Differential Equation</td>
</tr>
<tr>
<td>OEEVM</td>
<td>One-Equation EV Model</td>
</tr>
<tr>
<td>PDE</td>
<td>Partial Differential Equation</td>
</tr>
<tr>
<td>PIC</td>
<td>Particle in Cell</td>
</tr>
<tr>
<td>PPM</td>
<td>Piecewise Parabolic Method</td>
</tr>
<tr>
<td>RANS</td>
<td>Reynolds-Averaged Navier-Stokes</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds Number</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>RM</td>
<td>Ritchmyer-Meshkov</td>
</tr>
<tr>
<td>RT</td>
<td>Rayleigh-Taylor</td>
</tr>
<tr>
<td>SGS</td>
<td>Sub-Grid Scale</td>
</tr>
<tr>
<td>SHASTA</td>
<td>code name</td>
</tr>
<tr>
<td>SMAG</td>
<td>Smagorinsky</td>
</tr>
<tr>
<td>TGV</td>
<td>Taylor Green Vortex</td>
</tr>
<tr>
<td>TURMOIL3D</td>
<td>code name</td>
</tr>
<tr>
<td>TVD</td>
<td>Total Variation Diminishing</td>
</tr>
<tr>
<td>VC</td>
<td>Vorticity Confinement</td>
</tr>
<tr>
<td>VH-1</td>
<td>code name</td>
</tr>
<tr>
<td>WENO</td>
<td>Weighted ENO</td>
</tr>
</tbody>
</table>
List of Contributors

Prof. Dr. Nikolaus A. Adams
Lehrstuhl für Aerodynamik
Technische Universität München
Boltzmannstrasse 15
85748 Garching, Germany

Dr. Niklas Alin
The Swedish Defence Research Agency (FOI)
SE-172 90 Stockholm, Sweden

Dr. Magnus Berglund
The Swedish Defence Research Agency (FOI)
SE-172 90 Stockholm, Sweden

Dr. Jay P. Boris
Laboratory for Computational Physics & Fluid Dynamics
Naval Research Laboratory
Washington, DC 20375

Dr. Carl R. DeVore
Laboratory for Computational Physics & Fluid Dynamics
Naval Research Laboratory
Washington, DC 20375

Bill Dietz
University of Tennessee Space Institute
Tullahoma, TN 37388

Professor J. A. Domaradzki
Department of Aerospace and Mechanical Engineering
University of Southern California
Los Angeles, CA 90089

Professor Dimitris Drikakis
Cranfield University
School of Engineering
Befordshire MK43 0AL
United Kingdom

Meng Fan
University of Tennessee Space Institute
Tullahoma, TN 37388

Dr. Christer Fureby
Department of Weapons and Protection
The Swedish Defence Research Agency (FOI)
SE-172 90 Stockholm, Sweden

Dr. Fernando F. Grinstein
Applied Physics Division, MS B259
Los Alamos National Laboratory
Los Alamos, NM 87545

Marco Hahn
Cranfield University
School of Engineering
Befordshire MK43 0AL
United Kingdom
LIST OF CONTRIBUTORS

Dr. S. Hickel
Institute of Aerodynamics
Technische Universität München
85747 Garching, Germany

Prof. Doyle D. Knight
Department of Mechanical and Aerospace Engineering
Rutgers University – The State University of New Jersey
Piscataway, NJ 08854

Dr. Marco Kupiainen
Department of Numerical Analysis and Computer Science
Royal Institute of Technology
S-144 00 Stockholm, Sweden

Dr. Mattias Liefvendahl
The Swedish Defence Research Agency (FOI)
SE-172 90 Stockholm, Sweden

Dr. Eric Lillberg
The Swedish Defence Research Agency (FOI)
SE-172 90 Stockholm, Sweden

Dr. Nicholas Lynn
University of Tennessee Space Institute
Tullahoma, TN 37388

Dr. Len G. Margolin
Applied Physics Division, MS F644
Los Alamos National Laboratory
Los Alamos, NM 87545

Dr. Oskar Parmhed
The Swedish Defence Research Agency (FOI)
SE-172 90 Stockholm, Sweden

Dr. Gopal Patnaik
Laboratory for Computational Physics & Fluid Dynamics
Naval Research Laboratory
Washington, DC, 20375

Dr. Leif Persson
The Swedish Defence Research Agency (FOI)
Department of NBC Protection
SE 901 82 Umeå, Sweden

Dr. Tobias Persson
Chalmers University of Technology
Department of Shipping and Marine Technology
SE 412 96 Göteborg, Sweden

Prof. David H. Porter
Department of Astronomy
University of Minnesota
Minneapolis, MN 55455

Dr. William J. Rider
Computational Physics Research and Development Department
Sandia National Laboratories
PO Box 5800, Albuquerque, NM 87185-0183

Prof. Pierre Sagaut
Laboratoire de Modélisation en Mécanique
Université Pierre et Marie Curie
Centre National de la Recherche Scientifique
75252 Paris, Cedex 05, France

Dr. Piotr K. Smolarkiewicz
Mesoscale and Microscale Meteorology Division
National Center for Atmospheric Research
PO Box 3000, Boulder, CO 80307

Prof. John Steinhoff
University of Tennessee Space Institute
Tullahoma, TN 37388

Dr. Urban Svennberg
The Swedish Defence Research Agency (FOI)
SE-172 90 Stockholm, Sweden
LIST OF CONTRIBUTORS

Dr. Lesong Wang
University of Tennessee Space Institute
Tullahoma, TN 37388

Prof. Paul R. Woodward
Department of Astronomy
University of Minnesota
Minneapolis, MN 55455

Wenren Yonghu
University of Tennessee Space Institute
Tullahoma, TN 37388

Ted R. Young
Laboratory for Computational Physics & Fluid Dynamics
Naval Research Laboratory
Washington, DC, 20375

Dr. David L. Youngs
Atomic Weapons Establishment
Building E3 Aldermaston
Reading Berkshire RG7 4PR
United Kingdom