Advances in Credit Risk Modelling and Corporate Bankruptcy Prediction

The field of credit risk and corporate bankruptcy prediction has gained considerable momentum following the collapse of many large corporations around the world, and more recently through the sub-prime scandal in the United States. This book provides a thorough compendium of the different modelling approaches available in the field, including several new techniques that extend the horizons of future research and practice. Topics covered include probit models (in particular bivariate probit modelling), advanced logistic regression models (in particular mixed logit, nested logit and latent class models), survival analysis models, non-parametric techniques (particularly neural networks and recursive partitioning models), structural models and reduced form (intensity) modelling. Models and techniques are illustrated with empirical examples and are accompanied by a careful explanation of model derivation issues. This practical and empirically based approach makes the book an ideal resource for all those concerned with credit risk and corporate bankruptcy, including academics, practitioners and regulators.

Stewart Jones is Professor of Accounting at the University of Sydney. He has published extensively in the area of credit risk and corporate bankruptcy, and is co-editor of the leading international accounting and finance journal, *Abacus*.

David A. Hensher is Professor of Management at the University of Sydney. He is the author of numerous books and articles on discrete choice models, including *Stated Choice Methods* (Cambridge University Press, 2000) and *Applied Choice Analysis* (Cambridge University Press, 2005). He teaches discrete choice modelling to academic, business and government audiences, and is also a partner in Econometric Software, the developers of Nlogit and Limdep.
Researchers and practitioners in applied economics and business now have access to a much richer and more varied choice of data than earlier generations. Quantitative Methods for Applied Economics and Business Research is a new series aimed at meeting the needs of graduate students, researchers and practitioners who have a basic grounding in statistical analysis and who wish to take advantage of more sophisticated methodology in their work.

Published titles
Lusk and Shogren (eds.) Experimental Auctions
Contents

- **List of figures**
 page vii
- **List of tables**
 viii
- **List of contributors**
 x

Introduction
Stewart Jones and David A. Hensher
1

1 A statistical model for credit scoring
William H. Greene
14

2 Mixed logit and error component models of corporate insolvency and bankruptcy risk
David A. Hensher and Stewart Jones
44

3 An evaluation of open- and closed-form distress prediction models: The nested logit and latent class models
Stewart Jones and David A. Hensher
80

4 Survival analysis and omitted dividends
Marc J. Leclere
114

5 Non-parametric methods for credit risk analysis: Neural networks and recursive partitioning techniques
Maurice Peat
137

6 Bankruptcy prediction and structural credit risk models
Andreas Charitou, Neophytos Lambertides and Lenos Trigeorgis
154

7 Default recovery rates and LGD in credit risk modelling and practice: An updated review of the literature and empirical evidence
Edward I. Altman
175
<table>
<thead>
<tr>
<th></th>
<th>Contents</th>
</tr>
</thead>
</table>
| 8 | Credit derivatives: Current practices and controversies 207
 | Stewart Jones and Maurice Peat |
| 9 | Local government distress in Australia: A latent class regression analysis 242
 | Stewart Jones and Robert G. Walker |
| 10 | A belief-function perspective to credit risk assessments 269
 | Rajendra P. Srivastava and Stewart Jones |

Index 295
Figures

1.1 Model predictions of profits vs. default probabilities page 37
1.2 Expected profit vs. expected expenditure 38
1.3 Normalized expected profits 40
1.4 Profits vs. default probability 40
2.1 Bivariate scatter plot of Halton (7) and Halton (9) 55
3.1 Latent effects on corporate failure 94
3.2 Nested tree structure for states of financial distress 102
4.1 Kaplan–Meier estimator of survival function of omitted dividend payments 129
4.2 Kaplan–Meier estimator of survival function of omitted dividend payments stratified by income/assets 130
5.1 Single hidden layer neural network structure 141
5.2 Classification tree with two splits and three terminal nodes 151
7.1 Dollar weighted average recovery rates to dollar weighted average default rates (1982–2006) 186
8.1 A CDO structure 215
8.2 A synthetic CDO structure 216
8.3 Time series plot of daily Merton bankruptcy probabilities 237
8.4 Time series plot of daily reduced form bankruptcy probabilities 239
10.1 Evidential diagram for a rudimentary default risk model 284
10.2 Effect of reputation cost on desired level of default risk 291
Tables

1.1 Variables used in analysis of credit card default page 24
1.2 Descriptive statistics for variables 26
1.3 Sampling weights for choice-based sampling 27
1.4 Weighted and unweighted probit cardholder equations 29
1.5 Estimated expenditure equation 30
1.6 Average predicted expenditures 31
1.7 Default model 32
1.8 Estimated cardholder equation joint with default equation 33
1.9 Estimated default probabilities 35
1.10 Predictions for different thresholds 36
1.11 Sample average expected profits 37
1.12 Normalized expected profits 39
2.1 Definition of variables 63
2.2 Panel A: Fixed parameter estimates and t-values for final multinomial error component logit and standard MNL models 65
2.2 Panel B: Random parameter and latent error component estimates and t-values for final multinomial error component logit 66
2.2 Panel C: Log-likelihood at convergence and sample sizes for final multinomial error component logit and standard MNL models 68
2.2 Panel D: Descriptive statistics for significant covariates reported in panels A and B 68
2.2 Panel E: Direct elasticities for final multinomial error component logit and standard MNL models 72
3.1 Summary of major strengths and challenges of different logit models 90
3.2 Model fit summary, parameter estimates (random and fixed) for final nested logit, latent class MNL and mixed logit model 99
3.3 Forecasting performance of final multinomial nested logit, latent class MNL and mixed logit models across distress states 0–3 107
4.1 IPO date and qualified audit opinion 119
4.2 Survival analysis models 131
5.1 Neural network model fits 146
5.2 Classification tree results 151
5.3 Classification tree in rules form 152
6.1 Summary of main structural credit risk models 170
6.2 Structural models following Merton (1974) 171
6.3 Logistic regression for primary option variables 172
7.1 Recovery ratings from the ratings agencies 192
7.3 Investment grade vs. non-investment grade (original rating) 198
7.4 Ultimate recovery rates on bank loan and bond defaults (discounted values, 1988–2Q 2006) 199
7.5 The treatment of LGD and default rates within different credit risk models 201
8.1 Global CDO market issuance data 219
8.2 Average 1 year default rates 1983–2000 (Moody's) 234
8.3 Recovery rates on corporate bonds from Moody’s Investor’s Service (2000) 234
8.4 CDS premium calculation 235
8.5 CDS premium under structural probabilities 240
8.6 CDS premium under reduced form probabilities 240
9.1 Latent class regression analysis (1 class) for quantitative measures (i.e. physical output levels) of service delivery 249
9.2 Model fit and prediction statistics for a two-class latent regression model 257
9.3 Parameter estimates, wald statistics, Z values, means and standard deviations for latent class model 258
9.4 Comparison of financial performance of urban vs. rural councils 262
Contributors

Edward I. Altman is the Max L. Heine Professor of Finance Stern Business School, New York University.

Andreas Charitou is Professor of Accounting and Finance the University of Cyprus.

William H. Greene is Professor of Economics and Statistics Stern School of Business, New York University.

David A. Hensher is Professor of Management Faculty of Economics and Business, The University of Sydney.

Stewart Jones is Professor of Accounting Faculty of Economics and Business, The University of Sydney.

Neophytos Lambertides is Lecturer at Aston University, UK.

Marc J. Leclere is Assistant Professor of Accounting Department of Accounting College of Business Administration University of Illinois at Chicago.

Maurice Peat is Senior Lecturer of Finance Faculty of Economics and Business, The University of Sydney.

Rajendra P. Srivastava is Ernst & Young Distinguished Professor of Accounting and Director of the Ernst & Young Center for Auditing Research and Advanced Technology at the School of Business, University of Kansas.

Lenos Trigeorgis is Professor at the University of Cyprus and Visiting Professor at MIT.

Robert G. Walker is Professor of Accounting Faculty of Economics and Business, The University of Sydney.