MODERN PLASMA PHYSICS
VOLUME I: PHYSICAL KINETICS
OF TURBULENT PLASMAS

This three-volume series presents the ideas, models and approaches essential to understanding plasma dynamics and self-organization for researchers and graduate students in plasma physics, controlled fusion and related fields such as plasma astrophysics.

Volume 1 develops the physical kinetics of plasma turbulence through a focus on quasi-particle models and dynamics. It discusses the essential physics concepts and theoretical methods for describing weak and strong fluid and phase space turbulence in plasma systems far from equilibrium. The book connects the traditionally “plasma” topic of weak or wave turbulence theory to more familiar fluid turbulence theory, and extends both to the realm of collisionless phase space turbulence. This gives readers a deeper understanding of these related fields, and builds a foundation for future applications to multi-scale processes of self-organization in tokamaks and other confined plasmas. This book emphasizes the conceptual foundations and physical intuition underpinnings of plasma turbulence theory.

PATRICK H. DIAMOND is a Professor of Physics and Distinguished Professor at the Center for Astrophysics and Space Sciences and the Department of Physics at the University of California at San Diego, USA.

SANAE-I. ITOH is a Distinguished Professor at the Research Institute for Applied Mechanics at Kyushu University, Japan.

KIMITA ITOH is a Fellow and Professor at the National Institute for Fusion Science, Japan.

All three authors have extensive experience in turbulence theory and plasma physics.
Contents

Preface
page xi

Acknowledgements
page xv

1 Introduction
1. Why?
2. The purpose of this book
3. Readership and background literature
4. Contents and structure of this book
5. On using this book

2 Conceptual foundations
2. Introduction
3. Dressed test particle model of fluctuations in a plasma near equilibrium
 3.1 Basic ideas
 3.2 Fluctuation spectrum
 3.3 Relaxation near equilibrium and the Balescu–Lenard equation
 3.4 Test particle model: looking back and looking ahead
4. Turbulence: dimensional analysis and beyond – revisiting the theory of hydrodynamic turbulence
 4.1 Key elements in Kolmogorov theory of cascade
 4.2 Two-dimensional fluid turbulence
 4.3 Turbulence in pipe and channel flows
 4.4 Parallels between K41 and Prandtl’s theory

3 Quasi-linear theory
3. The why and what of quasi-linear theory
4. Foundations, applicability and limitations of quasi-linear theory
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1</td>
<td>Irreversibility</td>
<td>77</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Linear response</td>
<td>79</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Characteristic time-scales in resonance processes</td>
<td>80</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Two-point and two-time correlations</td>
<td>82</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Note on entropy production</td>
<td>85</td>
</tr>
<tr>
<td>3.3</td>
<td>Energy and momentum balance in quasi-linear theory</td>
<td>86</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Various energy densities</td>
<td>86</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Conservation laws</td>
<td>88</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Roles of quasi-particles and particles</td>
<td>90</td>
</tr>
<tr>
<td>3.4</td>
<td>Applications of quasi-linear theory to bump-on-tail instability</td>
<td>92</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Bump-on-tail instability</td>
<td>92</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Zeldovich theorem</td>
<td>93</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Stationary states</td>
<td>95</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Selection of stationary state</td>
<td>95</td>
</tr>
<tr>
<td>3.5</td>
<td>Application of quasi-linear theory to drift waves</td>
<td>99</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Geometry and drift waves</td>
<td>99</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Quasi-linear equations for drift wave turbulence</td>
<td>102</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Saturation via a quasi-linear mechanism</td>
<td>104</td>
</tr>
<tr>
<td>3.6</td>
<td>Application of quasi-linear theory to ion mixing mode</td>
<td>105</td>
</tr>
<tr>
<td>3.7</td>
<td>Nonlinear Landau damping</td>
<td>108</td>
</tr>
<tr>
<td>3.8</td>
<td>Kubo number and trapping</td>
<td>111</td>
</tr>
<tr>
<td>4</td>
<td>Nonlinear wave–particle interaction</td>
<td>114</td>
</tr>
<tr>
<td>4.1</td>
<td>Prologue and overview</td>
<td>114</td>
</tr>
<tr>
<td>4.2</td>
<td>Resonance broadening theory</td>
<td>117</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Approach via resonance broadening theory</td>
<td>117</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Application to various decorrelation processes</td>
<td>124</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Influence of resonance broadening on mean evolution</td>
<td>128</td>
</tr>
<tr>
<td>4.3</td>
<td>Renormalization in Vlasov turbulence I: Vlasov response function</td>
<td>130</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Issues in renormalization in Vlasov turbulence</td>
<td>130</td>
</tr>
<tr>
<td>4.3.2</td>
<td>One-dimensional electron plasmas</td>
<td>131</td>
</tr>
<tr>
<td>4.4</td>
<td>Renormalization in Vlasov turbulence II: drift wave turbulence</td>
<td>135</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Kinetic description of drift wave fluctuations</td>
<td>135</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Coherent nonlinear effect via resonance broadening theory</td>
<td>136</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Conservation revisited</td>
<td>137</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Conservative formulations</td>
<td>139</td>
</tr>
<tr>
<td>4.4.5</td>
<td>Physics content and predictions</td>
<td>142</td>
</tr>
</tbody>
</table>
5 Kinetics of nonlinear wave–wave interaction 150
 5.1 Introduction and overview 150
 5.1.1 Central issues and scope 150
 5.1.2 Hierarchical progression in discussion 151
 5.2 The integrable dynamics of three coupled modes 154
 5.2.1 Free asymmetric top (FAT) 154
 5.2.2 Geometrical construction of three coupled modes 155
 5.2.3 Manley–Rowe relation 158
 5.2.4 Decay instability 161
 5.2.5 Example – drift–Rossby waves 162
 5.2.6 Example – unstable modes in a family of drift waves 165
 5.3 The physical kinetics of wave turbulence 166
 5.3.1 Key concepts 166
 5.3.2 Structure of a wave kinetic equation 169
 5.3.3 ‘Collision’ integral 173
 5.3.4 Application to drift–Rossby wave 180
 5.3.5 Issues to be considered 185
 5.4 The scaling theory of local wave cascades 186
 5.4.1 Basic ideas 186
 5.4.2 Gravity waves 191
 5.5 Non-local interaction in wave turbulence 195
 5.5.1 Elements in disparate scale interaction 195
 5.5.2 Effects of large/meso scale modes on micro fluctuations 198
 5.5.3 Induced diffusion equation for internal waves 199
 5.5.4 Parametric interactions revisited 203

6 Closure theory 208
 6.1 Concepts in closure 208
 6.1.1 Issues in closure theory 210
 6.1.2 Illustration: the random oscillator 212
 6.1.3 Illustration by use of the driven-Burgers/KPZ equation (1) 216
 6.1.4 Illustration by use of the driven-Burgers/KPZ equation (2) 225
 6.1.5 Short summary of elements in closure theory 230
 6.1.6 On realizability 231
 6.2 Mori–Zwanzig theory and adiabatic elimination 233
 6.2.1 Sketch of projection and generalized Langevin equation 234
 6.2.2 Memory function and most probable path 237
 6.3 Langevin equation formalism and Markovian approximation 244
 6.3.1 Langevin equation approximation 244
 6.3.2 Markovian approximation 246
Contents

6.4 Closure model for drift waves 247
 6.4.1 Hasegawa–Mima equation 247
 6.4.2 Application of closure modelling 248
 6.4.3 On triad interaction time 253
 6.4.4 Spectrum 255
 6.4.5 Example of dynamical evolution – access to statistical equilibrium and H-theorem 256

6.5 Closure of kinetic equation 260

6.6 Short note on prospects for closure theory 263

7 Disparate scale interactions 266
 7.1 Short overview 266
 7.2 Langmuir waves and self-focusing 269
 7.2.1 Zakharov equations 269
 7.2.2 Subsonic and supersonic limits 273
 7.2.3 Subsonic limit 274
 7.2.4 Illustration of self-focusing 274
 7.2.5 Linear theory of self-focusing 276
 7.3 Langmuir wave turbulence 277
 7.3.1 Action density 278
 7.3.2 Disparate scale interaction between Langmuir turbulence and acoustic turbulence 278
 7.3.3 Evolution of the Langmuir wave action density 281
 7.3.4 Response of distribution of quasi-particles 283
 7.3.5 Growth rate of modulation of plasma waves 286
 7.3.6 Trapping of quasi-particles 287
 7.3.7 Saturation of modulational instability 289
 7.4 Collapse of Langmuir turbulence 291
 7.4.1 Problem definition 291
 7.4.2 Adiabatic Zakharov equation 293
 7.4.3 Collapse of plasma waves with spherical symmetry 293
 7.4.4 Note on ‘cascade versus collapse’ 297

8 Cascades, structures and transport in phase space turbulence 299
 8.1 Motivation: basic concepts of phase space turbulence 299
 8.1.1 Issues in phase space turbulence 299
 8.1.2 Granulation – what and why 305
 8.2 Statistical theory of phase space turbulence 314
 8.2.1 Structure of the theory 314
 8.2.2 Physics of production and relaxation 318
Contents

8.2.3 Physics of relative dispersion in Vlasov turbulence 329
8.3 Physics of relaxation and turbulent states with granulation 340
8.4 Phase space structures – a look ahead 347

9 MHD turbulence 348

9.1 Introduction to MHD turbulence 348
9.2 Towards a scaling theory of incompressible MHD turbulence 350
 9.2.1 Basic elements: waves and eddies in MHD turbulence 350
 9.2.2 Cross-helicity and Alfvén wave interaction 351
 9.2.3 Heuristic discussion of Alfvén waves and cross-helicity 353
 9.2.4 MHD turbulence spectrum (I) 355
 9.2.5 MHD turbulence spectrum (II) 357
 9.2.6 An overview of the MHD turbulence spectrum 359
9.3 Nonlinear Alfvén waves: compressibility, steepening and disparate-scale interaction 362
 9.3.1 Effect of small but finite compressibility 362
 9.3.2 A short note, for perspective 366
9.4 Turbulent diffusion of magnetic fields: a first step in mean field electrodynamics 366
 9.4.1 A short overview of issues 366
 9.4.2 Flux diffusion in a two-dimensional system: model and concepts 367
 9.4.3 Mean field electrodynamics for \(\langle A \rangle \) in a two-dimensional system 370
 9.4.4 Turbulent diffusion of flux and field in a three-dimensional system 380
 9.4.5 Discussion and conclusion for turbulent diffusion of a magnetic field 384

Appendix 1 Charney–Hasegawa–Mima equation 385
Appendix 2 Nomenclature 398
References 407
Index 415
Preface

The universe abounds with plasma turbulence. Most of the matter that we can observe directly is in the plasma state. Research on plasmas is an active scientific area, motivated by energy research, astrophysics and technology. In nuclear fusion research, studies of confinement of turbulent plasmas have lead to a new era, namely that of the international thermonuclear (fusion) experimental reactor, ITER. In space physics and in astrophysics, numerous data from measurements have been heavily analyzed. In addition, plasmas play important roles in the development of new materials with special industrial applications.

The plasmas that we encounter in research are often far from thermodynamic equilibrium: hence various dynamical behaviours and structures are generated because of that deviation. The deviation is often sufficient for observable mesoscale structures to be generated. Turbulence plays a key role in producing and defining observable structures. An important area of modern science has been recognized in this research field, namely, research on structure formation in turbulent plasmas associated with electromagnetic field evolution and its associated selection rules. Surrounded by increasing and detailed information on plasmas, some unified and distilled understanding of plasma dynamics is indeed necessary – “Knowledge must be developed into understanding”. The understanding of turbulent plasma is a goal for scientific research in plasma physics in the twenty-first century.

The objective of this series on modern plasma physics is to provide the viewpoint and methods which are essential to understanding the phenomena that researchers on plasmas have encountered (and may encounter), i.e., the mutually regulating interaction of strong turbulence and structure formation mechanisms in various strongly non-equilibrium circumstances. Recent explosive growth in the knowledge of plasmas (in nature as well as in the laboratory) requires a systematic explanation of the methods for studying turbulence and structure formation.
The rapid growth of experimental and simulation data has far exceeded the evolution of published monographs and textbooks. In this series of books, we aim to provide systematic descriptions (1) for the theoretical methods for describing turbulence and turbulent structure formation, (2) for the construction of useful physics models of far-from-equilibrium plasmas and (3) for the experimental methods with which to study turbulence and structure formation in plasmas. This series will fulfill needs that are widely recognized and stimulated by discoveries of new astrophysical plasmas and through advancement of laboratory plasma experiments related to fusion research. For this purpose, the series constitutes three volumes: Volume 1: Physical kinetics of turbulent plasmas, Volume 2: Turbulence theory for structure formation in plasmas and Volume 3: Experimental methods for the study of turbulent plasmas. This series is designed as follows.

Volume 1: Physical Kinetics of Turbulent Plasmas The objective of this volume is to provide a systematic presentation of the theoretical methods for describing turbulence and turbulent transport in strongly non-equilibrium plasmas. We emphasize the explanation of the progress of theory for strong turbulence. A viewpoint, i.e., that of the “quasi-particle plasma” is chosen for this book. Thus we describe ‘plasmas of excitons, dressed by collective interaction’, which enable us to understand the evolution and balance of plasma turbulence.

We stress (a) test field response (particles and waves, respectively), taking into account screening and dressing, as well as noise, (b) disparate scale interaction and (c) mean field evolution of the screened element gas. These three are essential building blocks with which to construct a physics picture of plasma turbulence in a strongly non-equilibrium state. In the past several decades, distinct progress has been made in this field, and verification and validation of nonlinear simulations are becoming more important and more intensively pursued. This is a good time to set forth a systematic explanation of the progress in methodology.

Volume 2: Turbulence Theory for Structure Formation in Plasmas This volume presents the description of the physics pictures and methods to understand the formation of structures in plasmas. The main theme has two aspects. The first is to present ways of viewing the system of turbulent plasmas (such as toroidal laboratory plasmas, etc.), in which the dynamics for both self-sustaining structure and turbulence coexist. The other is to illustrate key organizing principles and to explain appropriate methods for their utilization. The competition (e.g., global inhomogeneity, turbulent transport, quenching of turbulence, etc.) and self-sustaining mechanisms are described.

One particular emphasis is on a self-consistent description of the mechanisms of structure formation. The historical recognition of the proverb “All things flow” means that structures, which disappear within finite lifetimes, can also be, and are usually, continuously generated. Through the systematic description of plasma
Preface

xiv

turbulence and structure formation mechanisms, this book illuminates principles that govern evolution of laboratory and astrophysical plasmas.

Volume 3: Experimental Methods for the Study of Turbulent Plasmas The main objective is this volume is to explain methods for the experimental study of turbulent plasmas. Basic methods to identify elementary processes in turbulent plasmas are explained. In addition, the design of experiments for the investigation of plasma turbulence is also discussed with the aim of future extension of experimental studies. This volume has a special feature. While many books and reviews have been published on plasma diagnostics, i.e., how to obtain experimental signals in high temperature plasmas, little has been published on how one analyzes the data in order to identify and extract the physics of nonlinear processes and nonlinear mechanisms. In addition, the experimental study of nonlinear phenomena requires a large amount of data processing. This volume explains the methods for performing quantitative studies of experiments on plasma turbulence.

Structure formation in turbulent media has been studied for a long time, and the proper methodology to model (and to formulate) has been elusive. This series of books will offer a perspective on how to understand plasma turbulence and structure formation processes, using advanced methods.

Regarding readership, this book series is aimed at the more advanced graduate student in plasma physics, fluid dynamics, astrophysics and astrophysical fluids, nonlinear dynamics, applied mathematics and statistical mechanics. Only minimal familiarity with elementary plasma physics at the level of a standard introductory text is presumed. Indeed, a significant part of this book is an outgrowth of advanced lectures given by the authors at the University of California, San Diego, at Kyushu University and at other institutions. We hope the book may be of interest and accessible to postdoctoral researchers, to experimentalists and to scientists in related fields who wish to learn more about this fascinating subject of plasma turbulence.

In preparing this manuscript, we owe much to our colleagues for our scientific understanding. For this, we express our sincere gratitude in the Acknowledgements. There, we also acknowledge the funding agencies that have supported our research. We wish to show our thanks to young researchers and students who have helped in preparing this book, by typing and formatting the manuscript while providing invaluable feedback: in particular, Dr. N. Kasuya of NIFS and Mr. S. Sugita of Kyushu University for their devotion, Dr. F. Otsuka, Dr. S. Nishimura, Mr. A. Froese, Dr. K. Kamataki and Mr. S. Tokunaga of Kyushu University also deserve mention. A significant part of the material for this book was developed in the Nonlinear Plasma Theory (Physics 235) course at UCSD in 2005. We thank the students in this class, O. Gurcan, S. Keating, C. McDevitt, H. Xu and A. Walczak for their penetrating questions and insights. We would like to express our gratitude
Preface

to all of these young scientists for their help and stimulating interactions during the preparation of this book. It is our great pleasure to thank Kyushu University, the University of California, San Diego, and National Institute for Fusion Science for their hospitality while the manuscript of the book was prepared. Last but not least, we thank Dr. S. Capelin and his staff for their patience during the process of writing this book.
Acknowledgements

The authors acknowledge their mentors, for guiding their evolution as plasma physicists: Thomas H. Dupree, Marshall N. Rosenbluth, Tihiro Ohkawa, Fritz Wagner and Akira Yoshizawa: the training and challenges they gave us form the basis of this volume.

The authors are also grateful to their teachers and colleagues (in alphabetical order), R. Balescu, K. H. Burrell, B. A. Carreras, B. Coppi, R. Dashen, A. Fujisawa, A. Fukuyama, X. Garbet, T. S. Hahm, A. Hasegawa, D. W. Hughes, K. Ida, B. B. Kadomtsev, H. Mori, K. Nishikawa, S. Tobias, G. R. Tynan, M. Yagi, M. Wakatani and S. Yoshikawa. Their instruction, collaboration and many discussions have been essential and highly beneficial to the authors.

We wish to thank funding agencies that have given us support during the course of writing this book. We were partially supported by Grant-in-Aid for Specially-Promoted Research (16002005) of MEXT, Japan [Itoh project], by Department of Energy Grant Nos. DE-FG02-04ER54738, DEFC02-08ER54959 and DE-FC02-08ER54983, by Grant-in-Aid for Scientific Research (19360418, 21224014) of the Japan Society for the Promotion of Science, by the Asada Eiichi Research Foundation and by the collaboration programmes of the Research Institute for Applied Mechanics of Kyushu University, and of the National Institute for Fusion Science.