Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylcholine (Ach)</td>
<td>12, 37</td>
</tr>
<tr>
<td>acoustic-articulatory space area Spt.</td>
<td>168</td>
</tr>
<tr>
<td>sylvian fissure</td>
<td>168</td>
</tr>
<tr>
<td>acoustic sequences</td>
<td>364</td>
</tr>
<tr>
<td>ADHD, see attention deficit/hyper activity disorder (ADHD)</td>
<td></td>
</tr>
<tr>
<td>AFPs, see Anterior forebrain pathway (AFP)</td>
<td></td>
</tr>
<tr>
<td>aging, effects of</td>
<td>372</td>
</tr>
<tr>
<td>alien hand syndrome</td>
<td>11</td>
</tr>
<tr>
<td>alpha/gamma/theta band activity, see temporal integration window</td>
<td></td>
</tr>
<tr>
<td>Alzheimer's disease</td>
<td>10</td>
</tr>
<tr>
<td>American sign language (ASL)</td>
<td>129, 131, 133</td>
</tr>
<tr>
<td>DL-2-amino-5-phosphonovaleric acid (APV)</td>
<td>308</td>
</tr>
<tr>
<td>amnesia, retrograde</td>
<td>250</td>
</tr>
<tr>
<td>anterograde, see</td>
<td></td>
</tr>
<tr>
<td>anterograde amnesia</td>
<td></td>
</tr>
<tr>
<td>(long-term memories) studies on animals,</td>
<td>251-2</td>
</tr>
<tr>
<td>amygdala, 12, 15, 16, 47</td>
<td></td>
</tr>
<tr>
<td>damage to</td>
<td>299</td>
</tr>
<tr>
<td>defined, 299</td>
<td></td>
</tr>
<tr>
<td>and fear conditioning</td>
<td>299-301, 313</td>
</tr>
<tr>
<td>auditory, 300</td>
<td></td>
</tr>
<tr>
<td>theories, 313-14, 326</td>
<td></td>
</tr>
<tr>
<td>Hebb’s theory, 302, 303, 307</td>
<td></td>
</tr>
<tr>
<td>involvement in learning, 313</td>
<td></td>
</tr>
<tr>
<td>lesions in, 300, 313</td>
<td></td>
</tr>
<tr>
<td>memory consolidation, 310-12</td>
<td></td>
</tr>
<tr>
<td>NMDARs, 308</td>
<td></td>
</tr>
<tr>
<td>overexpression of CREB in, 311</td>
<td></td>
</tr>
<tr>
<td>role in fear, 300</td>
<td></td>
</tr>
<tr>
<td>in socialization, 47-8</td>
<td></td>
</tr>
<tr>
<td>amygdala, lateral nucleus of,</td>
<td></td>
</tr>
<tr>
<td>in auditory fear conditioning, 299</td>
<td></td>
</tr>
<tr>
<td>alternative theories, 313-14</td>
<td></td>
</tr>
<tr>
<td>cellular hypothesis of associate fear</td>
<td></td>
</tr>
<tr>
<td>learning, 301-3</td>
<td></td>
</tr>
<tr>
<td>and fear conditioning, 299-301</td>
<td></td>
</tr>
<tr>
<td>fear conditioning, role of NMDARs and</td>
<td></td>
</tr>
<tr>
<td>VGCCs, 300, 308-10</td>
<td></td>
</tr>
<tr>
<td>memory consolidation, 310-12</td>
<td></td>
</tr>
<tr>
<td>plasticity of neural response in LA, 307-8</td>
<td></td>
</tr>
<tr>
<td>synaptic plasticity in LA, 303-7</td>
<td></td>
</tr>
<tr>
<td>animal models of declarative memory, 243</td>
<td></td>
</tr>
<tr>
<td>see also memory systems</td>
<td></td>
</tr>
<tr>
<td>of hippocampal function, see brain system for declarative memory</td>
<td></td>
</tr>
<tr>
<td>anisomycin, 312</td>
<td></td>
</tr>
<tr>
<td>ANT, see Attention network test (ANT)</td>
<td></td>
</tr>
<tr>
<td>anterior cingulate cortex, 38</td>
<td></td>
</tr>
<tr>
<td>anterior forebrain pathway (AFP), lesions of, 364</td>
<td></td>
</tr>
<tr>
<td>anteriorograde amnesia (long term memories), 269</td>
<td></td>
</tr>
<tr>
<td>aphasia, progressive Broca-type, 181</td>
<td></td>
</tr>
<tr>
<td>fluent, 185-91</td>
<td></td>
</tr>
<tr>
<td>see also progressive fluent aphasia a.k.a semantic dementia nonfluent, 197-201</td>
<td></td>
</tr>
<tr>
<td>APV, see DL-2-Amino-5-phosphonovaleric acid (APV)</td>
<td></td>
</tr>
<tr>
<td>Aristotle, 9, 12, 13, 20</td>
<td></td>
</tr>
<tr>
<td>ASL, see American sign language (ASL)</td>
<td></td>
</tr>
<tr>
<td>Page Numbers</td>
<td>Relevant Text</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>126</td>
<td>associated behavioral capabilities</td>
</tr>
<tr>
<td>289</td>
<td>inferotemporal cortex, memory properties</td>
</tr>
<tr>
<td>286–90</td>
<td>neocortex</td>
</tr>
<tr>
<td>287</td>
<td>declarative memory, role in memory</td>
</tr>
<tr>
<td>128</td>
<td>attentional network, development</td>
</tr>
<tr>
<td>289</td>
<td>pair coding neurons, pair recall neurons</td>
</tr>
<tr>
<td>286–90</td>
<td>AST, see asymmetric sampling in time (AST)</td>
</tr>
<tr>
<td>126</td>
<td>behavioral effects</td>
</tr>
<tr>
<td>51</td>
<td>priming, definition</td>
</tr>
<tr>
<td>49</td>
<td>modularity, selection</td>
</tr>
<tr>
<td>34</td>
<td>faces, hypothesis and characteristics</td>
</tr>
<tr>
<td>41–3, 53</td>
<td>cellular mechanism</td>
</tr>
<tr>
<td>34</td>
<td>neuropsychology, in relation with alertness</td>
</tr>
<tr>
<td>51–2</td>
<td>attention deficit/hyperactivity disorder (ADHD), adults, children</td>
</tr>
<tr>
<td>34</td>
<td>shifting of attention</td>
</tr>
<tr>
<td>34</td>
<td>magnitude, 88–94 response</td>
</tr>
<tr>
<td>145</td>
<td>five groups study, out of control, response, deaf individuals, testing</td>
</tr>
<tr>
<td>34</td>
<td>test results, monkeys</td>
</tr>
<tr>
<td>40–1, 47</td>
<td>circuitry, faces</td>
</tr>
<tr>
<td>54</td>
<td>target, multiple</td>
</tr>
<tr>
<td>47</td>
<td>questionnaires, conclusion</td>
</tr>
<tr>
<td>42</td>
<td>attention network test (ANT), children</td>
</tr>
<tr>
<td>140–1</td>
<td>speech segmentation</td>
</tr>
<tr>
<td>134</td>
<td>English and Chinese proficiency</td>
</tr>
<tr>
<td>141–5</td>
<td>bilingual speakers, data hypothesis, English proficiency</td>
</tr>
<tr>
<td>133–40</td>
<td>adults, children, test results, monkeys</td>
</tr>
<tr>
<td>141–5</td>
<td>bilingual speakers, data hypothesis, English proficiency</td>
</tr>
<tr>
<td>140–1</td>
<td>English and Chinese proficiency</td>
</tr>
<tr>
<td>141–5</td>
<td>bilingual speakers, data hypothesis, English proficiency</td>
</tr>
</tbody>
</table>

Index
Index

416 Index

birdsong, as learned vocal behavior, 363
bottom-up process, in visual cortex, 102
brain activation, 81
as casual machine, 4
distinction between voluntary and involuntary actions, 9
mechanisms (mammals), 3–4
structures, 10
brain specialization, newborns
evidence from ot, 214–17
Hitachi, prototype device, 214–17
FW/BW speech, 214–17
hemodynamic response (oxyHB/deoxyHB), 215
stimuli blocks (three kinds), 214–17
neonates, use of rhythm (language), 217–22
brain system for declarative memory
animal models of hippocampal function, 275–7
spatial learning, 275
transitive inference task, animals, 276
association neocortex in memory, 286–90
see also association neocortex
hippocampal memory system, 266
anterograde amnesia, 269
association neocortex region, 268, 271
declarative/
nondeclarative memory, 266
definition, 268
delayed nonmatching to sample (DNMS) task, 267
episodic memory consolidation, 270
memory space, 275
retrograde amnesia, 270
valid animal model of human amnesia, 266
hippocampus and parahippocampal region, comparison in coding, see coding mechanisms, neurophysiology of hippocampal function, 277–84
odor discrimination learning, 278–9
odor recognition memory task, 279
parahippocampal region in memory, role of, 282–4
see also orbitofrontal cortex; parahippocampal region
neurophysiology of parahippocampal function, 284–5
electrophysiological studies, 284–5
see also electrophysiological studies, parahippocampal cells
Brodmann area (BA), 84
CA1, 327, 328, 351–2
and long-term spatial memory, 330
NR, role of, in acquisition of spatial memory, 329–30
place cells, 344
site for memory storage, 348
CA3, 327
calcium influx, mechanisms, 299, 304
calretinin, 333
CA3-NR1 KO, 331, 333–6
immunohistochemical characterization of, 336
partial cue removal and output of CA1 place cells, 346
CA3 pyramidal cell-specific NR1 knockout mice (CA3-NR1 KO mice), see CA3-NR1 KO
Cd $^{2+}$ sensitivity, whole-cell Na$^{+}$ currents 400
CELF sentence structures, 134, 139
chronic stress, exposure, 352
cingulate gyrus anterior, 10, 12
middle area, 11
circuitry, 40–1, 47
classical fear conditioning, 5
claustrophobia, 7
clonidine, 37
coding mechanisms, hippocampus and parahippocampal region, comparison
coding, differences, 286
episode-specific coding, 286
memory signals, types, 285
cognitive phenomena, 326
cognitive science problems early and late selection, 50–1
modularity, 49
priming, 51
compatibilism, 6
conditioned stimulus (CS), 299
congenitally deaf individuals, 129–33
behavioral responses, 126
electrophysiological response, 126
peripheral visual stimuli, 126
response to visual stimuli, 126
the consonant/vowel distinction, 227–9
role of consonants/vowels, infants, 227–8
cortex areas phonological, 125
prosodic, 125
semantic, 125
syntactic, 125
stimulation, 128
cortical circuitry, receptive field modification, 70
see also cortical dynamics and visual perception
cortical dynamics and visual perception, 62
Gestalt rules, natural scenes, 68
contextual influences measurement, 68
contours in natural scenes, 68
perceptual learning, top down control, 68–74
see also perceptual learning, definition
receptive field, cortical circuitry, 62–8
see also receptive field (RF) size
conditioned stimulus (CS), 299
cortical mechanisms, visuospatial attention in humans and monkeys, 77–9
attentional top-down bias, 86
functional brain imaging, 81–2
lesion studies, 13–14
neural basis, competition for representation
multiple visual stimuli, sensory interactions, 82
visual cortex, organization of, 79–82
role of V4 and TEO in filtration, 89
visual cortex, attentional response modulation in, 89
baseline activity, 91–4
filtration, 89–91
cortical recruitment, 71 critical period, see sensitive period
cross-modal plasticity, 126
CS, see conditioned stimulus (CS)
cytoarchitecture, 335
deaf, 130–3, 139
congenital, 125, 129
and neural subsystems, 138
subjects’ ERP, 130
decision-making caused, 19
habits, 15
neurobiology of, 18
noncaused, 19
degrees of plasticity, subsystems in language, 125–9
congenitally deaf individuals, 129–33
speech segmentation in bilinguals, 140–1
behavioral study, 141–5
event-related potential study, 145–7
syntactic and semantic processing, 133–4
anomalies, 134–7
closed- and open-class words, 137–40
linguistic proficiency, 134
syntactic and semantic processing, hearing bilinguals, 133–4
dentate gyrus (DG), 327, 331, 332, 333
desire, 4, 5
addictions, 7
strength of, 7
subtle manipulation, 7
development cognitive, 126
course for subsystem, 126
neural, 125
post-natal, 125
DG, see dentate gyrus (DG)
distracter-induced impairment, 97, 100
Index

distracters, 96

distress control infants, 45–6

dopamine, 12

dorsal stream, 79, 82
dorsolateral thalamus (DLM), 374
dual selectivity, 370

dopaminergic inputs, 374

donor neurons, 374

discrimination practice, 12

eddycurrent imaging, 81

efference copy, 363, 373
eighth-nerve, growth of 404

neurotrophin receptors on the afferents, 404
secretion from inner ear, 404
electrophysiological evidence, 138, 149
congenitally deaf individuals, 126
phase structure violations, 136
electrophysiological studies, parahippocampal cells enhanced firing, 284
increased/decreased firing, 284
stimulus-specific firing, 284
empathy, 47
tenorial cortex (EC), 327, 328
ERP, see event-related potential (ERP)
error detection Simon game, 48
event-related potential (ERP), 134
bilinguals, 137
Japanese late-learners English (JE), 145
monolingual English speakers (ME), 145
responses elicited, 135
functional brain imaging, 81, 82, 102–6
functional magnetic resonance imaging, see
fMRI (functional magnetic resonance imaging)
fusiform gyrus, 84
fuzzy-bordered distinction, 10
extracellular papain

treatment, hair isolation, 395–6
extrastriate cortex, 84, 85, 90
visual areas, 86, 88, 100, 106
fear conditioning, 299
amygdala and, 299–301
role of NMDARs and VGCCs, 308–10
fear learning, types, 308
fear memory long-term, 311
short-term, 311
FEF, see frontal eye fields (FEF)
fMR (functional magnetic resonance imaging), 11, 81, 83, 87, 92, 131, 182
electrophysiological studies, parahippocampal cells enhanced firing, 284
increased/decreased firing, 284
stimulus-specific firing, 284
empathy, 47
EC, see entorhinal cortex (EC)
efference copy, 363, 373
eighth-nerve, growth of 404
neurotrophin receptors on the afferents, 404
secretion from inner ear, 404
electrophysiological evidence, 138, 149
congenitally deaf individuals, 126
phase structure violations, 136
electrophysiological studies, parahippocampal cells enhanced firing, 284
increased/decreased firing, 284
stimulus-specific firing, 284
empathy, 47
entorhinal cortex (EC), 327, 328
ERP, see event-related potential (ERP)
error detection Simon game, 48
event-related potential (ERP), 134
bilinguals, 137
Japanese late-learners English (JE), 145
monolingual English speakers (ME), 145
responses elicited, 135
erectory glutamatergic inputs, 374
excitatory neurons, principle, 304
executive network, attention cellular mechanism, 41–3, 53
circuitry, 40–1, 47
functional anatomy, 38–40
extracellular papain

treatment, hair isolation, 395–6
extrastriate cortex, 84, 85, 90
visual areas, 86, 88, 100, 106
fear conditioning, 299
amygdala and, 299–301
role of NMDARs and VGCCs, 308–10
fear learning, types, 308
fear memory long-term, 311
short-term, 311
FEF, see frontal eye fields (FEF)
fMR (functional magnetic resonance imaging), 11, 81, 83, 87, 92, 131, 182
electrophysiological studies, parahippocampal cells enhanced firing, 284
increased/decreased firing, 284
stimulus-specific firing, 284
empathy, 47
EC, see entorhinal cortex (EC)
efference copy, 363, 373
eighth-nerve, growth of 404
neurotrophin receptors on the afferents, 404
secretion from inner ear, 404
electrophysiological evidence, 138, 149
congenitally deaf individuals, 126
phase structure violations, 136
electrophysiological studies, parahippocampal cells enhanced firing, 284
increased/decreased firing, 284
stimulus-specific firing, 284
empathy, 47
entorhinal cortex (EC), 327, 328
ERP, see event-related potential (ERP)
error detection Simon game, 48
event-related potential (ERP), 134
bilinguals, 137
Japanese late-learners English (JE), 145
monolingual English speakers (ME), 145
responses elicited, 135
functional brain imaging, 81, 82, 102–6
functional magnetic resonance imaging, see
fMRI (functional magnetic resonance imaging)
fusiform gyrus, 84
fuzzy-bordered distinction, 10
extracellular papain
treatment, hair isolation, 395–6
extrastriate cortex, 84, 85, 90
visual areas, 86, 88, 100, 106
fear conditioning, 299
amygdala and, 299–301
role of NMDARs and VGCCs, 308–10
fear learning, types, 308
fear memory long-term, 311
short-term, 311
FEF, see frontal eye fields (FEF)
fMR (functional magnetic resonance imaging), 11, 81, 83, 87, 92, 131, 182

electrophysiological evidence, 138, 149
congenitally deaf individuals, 126
phase structure violations, 136
electrophysiological studies, parahippocampal cells enhanced firing, 284
increased/decreased firing, 284
stimulus-specific firing, 284
empathy, 47
entorhinal cortex (EC), 327, 328
ERP, see event-related potential (ERP)
error detection Simon game, 48
event-related potential (ERP), 134
bilinguals, 137
Japanese late-learners English (JE), 145
monolingual English speakers (ME), 145
responses elicited, 135
functional brain imaging, 81, 82, 102–6
functional magnetic resonance imaging, see
fMRI (functional magnetic resonance imaging)
fusiform gyrus, 84
fuzzy-bordered distinction, 10
extracellular papain
treatment, hair isolation, 395–6
extrastriate cortex, 84, 85, 90
visual areas, 86, 88, 100, 106
fear conditioning, 299
amygdala and, 299–301
role of NMDARs and VGCCs, 308–10
fear learning, types, 308
fear memory long-term, 311
short-term, 311
FEF, see frontal eye fields (FEF)
fMR (functional magnetic resonance imaging), 11, 81, 83, 87, 92, 131, 182

Hebb, Donald, 301, 329
Hebbian LTP

Hebbian mechanisms, Na⁺ channels, 9-14, 404
Hebbian synaptic plasticity,

Hebbian mechanisms, Na⁺ channels, 9-14, 404
Hebbian synaptic plasticity,
<table>
<thead>
<tr>
<th>Page</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>302, 303, 307</td>
<td>Hebb’s theory, 302, 303, 307</td>
</tr>
<tr>
<td>328</td>
<td>hippocampus, 328</td>
</tr>
<tr>
<td>327</td>
<td>excitatory pathways, 328</td>
</tr>
<tr>
<td>327</td>
<td>role in learning and memory, 327</td>
</tr>
<tr>
<td>125</td>
<td>human development post-natal development, 125</td>
</tr>
<tr>
<td>126, 129</td>
<td>sensitive/critical period, 126, 129</td>
</tr>
<tr>
<td>6</td>
<td>‘choices and decisions’ argument, 3</td>
</tr>
<tr>
<td>4</td>
<td>competing hypothesis, 6</td>
</tr>
<tr>
<td>4</td>
<td>libertarianism, 4</td>
</tr>
<tr>
<td>6</td>
<td>Huntington’s disease, 6</td>
</tr>
<tr>
<td>332</td>
<td>immunoreactivity (IR), 332</td>
</tr>
<tr>
<td>155–6</td>
<td>importance of words, use of language, 155–6</td>
</tr>
<tr>
<td>9</td>
<td>‘in control’ and ‘out of control’, 9</td>
</tr>
<tr>
<td>12</td>
<td>appetite as a parameter, 12</td>
</tr>
<tr>
<td>18</td>
<td>hypothesis, 18</td>
</tr>
<tr>
<td>10</td>
<td>primary determinants, 10</td>
</tr>
<tr>
<td>18</td>
<td>psychology, 18</td>
</tr>
<tr>
<td>43–5</td>
<td>individual differences, 43–5</td>
</tr>
<tr>
<td>44</td>
<td>ANT, 44</td>
</tr>
<tr>
<td>45</td>
<td>inferior parietal lobule (IPL), 102</td>
</tr>
<tr>
<td>79, 82</td>
<td>inferior temporal cortex, 79, 82</td>
</tr>
<tr>
<td>121–14</td>
<td>innate dispositions, 121–14</td>
</tr>
<tr>
<td>212</td>
<td>innate dispositions, 212</td>
</tr>
<tr>
<td>211–14</td>
<td>language, 211–14</td>
</tr>
<tr>
<td>212</td>
<td>speech vs. backward speech, 212</td>
</tr>
<tr>
<td>212</td>
<td>STS (Superior Temporal Sulus), 212</td>
</tr>
<tr>
<td>402</td>
<td>inner ear development, role of Na⁺ currents in 402</td>
</tr>
<tr>
<td>402</td>
<td>behavioral study, 141–5 event-related potential study, 145–7</td>
</tr>
<tr>
<td>326–7</td>
<td>hippocampal network, 327–8</td>
</tr>
<tr>
<td>349</td>
<td>implications, 352 model of associative memory, 349–52</td>
</tr>
<tr>
<td>Language, subsystems (cont.)</td>
<td>Right hemisphere, 42, 43</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Syntactic and semantic</td>
<td>anterior cingulate, 41</td>
</tr>
<tr>
<td>processing, 133–4</td>
<td>mid frontal area, 41</td>
</tr>
<tr>
<td>Anomalies, 134–7</td>
<td></td>
</tr>
<tr>
<td>Closed- and open-class</td>
<td>temporal-parietal</td>
</tr>
<tr>
<td>Words, 137</td>
<td>junction, 35, 37</td>
</tr>
<tr>
<td>Linguistic proficiency, 134–40</td>
<td>parietal, 101</td>
</tr>
<tr>
<td>Syntactic and semantic</td>
<td>unilateral, 101, 126</td>
</tr>
<tr>
<td>Processing, hearing</td>
<td>V4 and TEO, 97, 99</td>
</tr>
<tr>
<td>Bilinguals, 133–4</td>
<td>Lexical information, 140,141,145</td>
</tr>
<tr>
<td>Lateral magnocellular nucleus</td>
<td></td>
</tr>
<tr>
<td>of anterior neostriatum</td>
<td>Hume’s argument, 4</td>
</tr>
<tr>
<td>(LMAN), 365, 371</td>
<td>inconsistent, 4</td>
</tr>
<tr>
<td>Lateral nucleus in amygdala</td>
<td>‘line label’, 74</td>
</tr>
<tr>
<td>Role in auditory fear</td>
<td>lingual gyrus, 84</td>
</tr>
<tr>
<td>Conditioning, 299–301</td>
<td>Linguistic basis, speech</td>
</tr>
<tr>
<td>Alternative theories, 313–14</td>
<td>perception, 155–63</td>
</tr>
<tr>
<td>Amygdala and fear conditioning, 299–301</td>
<td>Allophonic variability, 159</td>
</tr>
<tr>
<td>Memory consolidation 310–12</td>
<td>Constraints, sequencing, 158</td>
</tr>
<tr>
<td>Cellular hypothesis of</td>
<td>Distinctive features, role of, 163</td>
</tr>
<tr>
<td>Associate fear learning, 301–3</td>
<td>Importance of words, use of language, 155</td>
</tr>
<tr>
<td>Fear conditioning, role of</td>
<td>Phonology, process, 159–62</td>
</tr>
<tr>
<td>NMDARs and VGCCs, 308–10</td>
<td>Spoken language, words in, 157</td>
</tr>
<tr>
<td>Plasticity of neural response in LA, 307–8</td>
<td>Words vs. speech sounds, 158</td>
</tr>
<tr>
<td>Synaptic plasticity in LA, 308–9</td>
<td>Written language, words in, 156</td>
</tr>
<tr>
<td>Lateral occipital sulcus, 84</td>
<td>Linguistic processing, 129</td>
</tr>
<tr>
<td>Lateral prefrontal cortex, 38</td>
<td>Long-term depression</td>
</tr>
<tr>
<td>Layer v, 42</td>
<td>(LTD), 329</td>
</tr>
<tr>
<td>Left anterior negativity (LAN)</td>
<td>Long-term potentiation</td>
</tr>
<tr>
<td>Asymmetry, 136</td>
<td>(LTP), 303, 329, 338</td>
</tr>
<tr>
<td>Left hemisphere dominance,</td>
<td>Associative, 303, 306</td>
</tr>
<tr>
<td>Speech, 213</td>
<td>Early LTP (E-LTP), 311</td>
</tr>
<tr>
<td>Leptin, 13</td>
<td>Hebbian, 303, 304, 306</td>
</tr>
<tr>
<td>And obesity, 13</td>
<td>Late LTP (L-LTP), 311</td>
</tr>
<tr>
<td>Lesions, 95, 101–2</td>
<td>Lower visual field (LVF)</td>
</tr>
<tr>
<td></td>
<td>Topography, 84</td>
</tr>
<tr>
<td></td>
<td>LTD, see long-term</td>
</tr>
<tr>
<td></td>
<td>depression (LTD)</td>
</tr>
<tr>
<td></td>
<td>LTP, see long-term</td>
</tr>
<tr>
<td></td>
<td>Potentiation (LTP)</td>
</tr>
<tr>
<td></td>
<td>Marr, D.</td>
</tr>
<tr>
<td></td>
<td>Pioneering neural network theory, 330</td>
</tr>
<tr>
<td></td>
<td>Recurrent network as</td>
</tr>
<tr>
<td></td>
<td>Autoassociative memory</td>
</tr>
<tr>
<td></td>
<td>System, 330</td>
</tr>
<tr>
<td></td>
<td>Maturational constraints, 126</td>
</tr>
<tr>
<td></td>
<td>Mature hair cells, 17, 396</td>
</tr>
<tr>
<td></td>
<td>Phase-locked voltage</td>
</tr>
<tr>
<td></td>
<td>Oscillations, 396</td>
</tr>
<tr>
<td></td>
<td>Medial superior temporal</td>
</tr>
<tr>
<td></td>
<td>(MST), 83</td>
</tr>
<tr>
<td></td>
<td>Medical temporal lobe and</td>
</tr>
<tr>
<td></td>
<td>Declarative memory, 244</td>
</tr>
<tr>
<td></td>
<td>See also memory systems</td>
</tr>
<tr>
<td></td>
<td>Memory consolidation, 310, 312</td>
</tr>
<tr>
<td></td>
<td>Process, 270</td>
</tr>
<tr>
<td></td>
<td>Memory systems</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments, 243–4</td>
</tr>
<tr>
<td></td>
<td>Animal models of</td>
</tr>
<tr>
<td></td>
<td>Declarative memory, 259–61</td>
</tr>
<tr>
<td></td>
<td>Ibotenate/ radiofrequency</td>
</tr>
<tr>
<td></td>
<td>Group, 261</td>
</tr>
<tr>
<td></td>
<td>Recognition memory, 259</td>
</tr>
<tr>
<td></td>
<td>Visual paired-comparison</td>
</tr>
<tr>
<td></td>
<td>Task/amnesic patients, 259</td>
</tr>
<tr>
<td></td>
<td>Hippocampus</td>
</tr>
<tr>
<td></td>
<td>Function, 243–4</td>
</tr>
<tr>
<td></td>
<td>The medical temporal</td>
</tr>
<tr>
<td></td>
<td>Lobe and declarative</td>
</tr>
<tr>
<td></td>
<td>Memory, 244–55</td>
</tr>
</tbody>
</table>
amygdala, 244
entorhinal cortex, 244
hippocampus, 244
mental navigation
tests, 254–5
retrograde amnesia,
see amnesia, retrograde
nondeclarative
memory, 255–9
definition, 255
emotional memory, 266
habit learning, 266
neostriatum (skill and
habit), 259
repetition priming, 254
memory ‘template’, 364
MF, see mossy fibers (MF)
MFG, see middle frontal gyrus
(MFG)
middle frontal gyrus (MFG)
middle temporal area
(MT), 79, 81
mitogen-activated protein
kinase (MAPK), 311
mnemonic process, 352
monkey physiology
hypothesis, 83–4
monolingual
speakers, 139, 145
vs. bilingual, 147
English, 147
syntactic and
semantic processing, 133
mossy fibers (MF), 328, 336
MST, see medial superior
temporal (MST)
MT, see middle temporal
area (MT)
N100, 147
N280, 130, 139
N400, 137
Na+ channel subunit
expression, rat utricular
epithelium, 10,
401–402
isoforms, 402
postsynaptic effect of
BDNF, 404–5
Na+ current in development,
possible roles of, 12
exocytosis, 403
postsynaptic bouton
terminals, 403, 404
presynaptic ribbons, 403
voltage-gated Ca2+
channels, 403
see also eighth-nerve,
growth of
native language vs. second
language learning, 127
native speakers, 129, 140,
141, 144
segmentation task, 140
natural language, 133
natural scenes
geometry, 68, 74
Gestalt rules, 68
negative potential, 130
neonates, use of rhythm
(language), 217–22
constituents, 217
syllables, feet,
morae, 217
inter-vocalic interval,
infant’s behavior, 219
unknown language
discrimination, 221
vowels, importance at early
stage, 219
neural basis
competition for
representation
sensory interactions
among multiple visual
stimuli,
visual cortex,
organization, 79–80
speech perception, 164–76
acoustic-articulatory
space, 167–8
empirical support/
challenges, 174–6
functional anatomy,
speech process, 168
functional asymmetry,
AST model, 169–70
spectro-temporal
representation,
auditory cortex, 164–5
speech, lexical
information, 165–6
neural development
sensory systems, 126
subsystems hypothesis, 133
neural mechanisms, 364
neural subsystems
hypothesis, 133
neuroanatomical issues
balance of left vs. right
temporal atrophy, 181
structural vs. functional
lesions, 181
neuroanatomy of semantic
representations, 191–7
brain-imaging
techniques, 191
connectionist network
proposal, 196
‘functional’ lesion, 192
PET activation
studies, 192–3
neurobiological
mechanisms, 299
neurocognitive
systems, 125–6
neuro-degenerative disease
on language systems,
impact, 181–4
Broca-type aphasia, 181
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>neuro-degenerative (cont.)</td>
<td></td>
</tr>
<tr>
<td>neuroanatomy of semantic representations, see</td>
<td></td>
</tr>
<tr>
<td>neuroanatomy of semantic representations</td>
<td></td>
</tr>
<tr>
<td>see also hippocampal neuroanatomical issues, 181</td>
<td></td>
</tr>
<tr>
<td>progressive fluent aphasia, see progressive fluent aphasia a.k.a semantic dementia</td>
<td></td>
</tr>
<tr>
<td>progressive nonfluent aphasia, 197–201</td>
<td></td>
</tr>
<tr>
<td>impaired speech production and working memory deficit, 200</td>
<td></td>
</tr>
<tr>
<td>phonological errors, 198</td>
<td></td>
</tr>
<tr>
<td>spoonerism, 197</td>
<td></td>
</tr>
<tr>
<td>remarks, 201–2</td>
<td></td>
</tr>
<tr>
<td>neuroimaging studies, 31</td>
<td></td>
</tr>
<tr>
<td>neuromodulators</td>
<td></td>
</tr>
<tr>
<td>dopamine, 12</td>
<td></td>
</tr>
<tr>
<td>serotonin, 12</td>
<td></td>
</tr>
<tr>
<td>neurons, 79, 89, 91, 366</td>
<td></td>
</tr>
<tr>
<td>AFP, 366</td>
<td></td>
</tr>
<tr>
<td>2-dimentional interaction field, 68</td>
<td></td>
</tr>
<tr>
<td>postsynaptic, 304</td>
<td></td>
</tr>
<tr>
<td>presynaptic, 304</td>
<td></td>
</tr>
<tr>
<td>properties, using contours, 68</td>
<td></td>
</tr>
<tr>
<td>response to CS, 301, 307</td>
<td></td>
</tr>
<tr>
<td>RF of, 85</td>
<td></td>
</tr>
<tr>
<td>neurophysiology, 133</td>
<td></td>
</tr>
<tr>
<td>hippocampal cells, 279–80</td>
<td></td>
</tr>
<tr>
<td>episode, types, 279</td>
<td></td>
</tr>
<tr>
<td>hippocampal function, of, 277–84</td>
<td></td>
</tr>
<tr>
<td>parahippocampal function, of, 282–4</td>
<td></td>
</tr>
<tr>
<td>electro physiological studies, responses, 284–5</td>
<td></td>
</tr>
<tr>
<td>memory system, neurophysiology of hippocampal function</td>
<td></td>
</tr>
<tr>
<td>neuropsychology, in relation with attention, 51–2</td>
<td></td>
</tr>
<tr>
<td>alertness, 53</td>
<td></td>
</tr>
<tr>
<td>rehabilitation studies, 52–3</td>
<td></td>
</tr>
<tr>
<td>neuroscience, 32</td>
<td></td>
</tr>
<tr>
<td>caused choice</td>
<td></td>
</tr>
<tr>
<td>and free choice, 3, 8–9</td>
<td></td>
</tr>
<tr>
<td>internal causes, 6–7</td>
<td></td>
</tr>
<tr>
<td>voluntary causes, 6–8</td>
<td></td>
</tr>
<tr>
<td>control and action, 3–6</td>
<td></td>
</tr>
<tr>
<td>hypothesis, 18</td>
<td></td>
</tr>
<tr>
<td>issues</td>
<td></td>
</tr>
<tr>
<td>brain’s capacity for plasticity, 243</td>
<td></td>
</tr>
<tr>
<td>hard wiring of the brain, 243</td>
<td></td>
</tr>
<tr>
<td>prototypes, 9–14</td>
<td></td>
</tr>
<tr>
<td>responsibility, 9–14, 19–21</td>
<td></td>
</tr>
<tr>
<td>self-control, 14–17</td>
<td></td>
</tr>
<tr>
<td>uncaused choice, 18–19</td>
<td></td>
</tr>
<tr>
<td>neurotransmitters</td>
<td></td>
</tr>
<tr>
<td>acetylcholine, 12</td>
<td></td>
</tr>
<tr>
<td>norepinephrine, 12</td>
<td></td>
</tr>
<tr>
<td>neurotrophin brain derived growth factor (BDNF), 20, 404</td>
<td></td>
</tr>
<tr>
<td>newborns, brain specialization, see brain specialization, newborns</td>
<td></td>
</tr>
<tr>
<td>glutamate receptors, 304, 305</td>
<td></td>
</tr>
<tr>
<td>N-methyl-D-aspartate class of glutamate receptors, see NMDAR (N-methyl-D-aspartate class of glutamate receptors)</td>
<td></td>
</tr>
<tr>
<td>noncasual choice</td>
<td></td>
</tr>
<tr>
<td>hypothesis, 6</td>
<td></td>
</tr>
<tr>
<td>noncasuality, 19</td>
<td></td>
</tr>
<tr>
<td>nondeclarative memory, see memory systems</td>
<td></td>
</tr>
<tr>
<td>non-native speakers, 141</td>
<td></td>
</tr>
<tr>
<td>norepinephrine, 12</td>
<td></td>
</tr>
<tr>
<td>norepinephrine (NE) system, 43</td>
<td></td>
</tr>
<tr>
<td>obsessive-compulsive disorder (OCD), 6–7</td>
<td></td>
</tr>
<tr>
<td>occipitotemporal pathway, 79</td>
<td></td>
</tr>
<tr>
<td>ventral, 81</td>
<td></td>
</tr>
<tr>
<td>optical topography, 214</td>
<td></td>
</tr>
<tr>
<td>oral-aural language, 133</td>
<td></td>
</tr>
<tr>
<td>orbitofrontal cortex and parahippocampal region, 287</td>
<td></td>
</tr>
<tr>
<td>firing, cells, 288</td>
<td></td>
</tr>
<tr>
<td>mixing pot for sensory signals, 289</td>
<td></td>
</tr>
<tr>
<td>organization, brain system for declarative memory, 271–4</td>
<td></td>
</tr>
<tr>
<td>271–4</td>
<td></td>
</tr>
<tr>
<td>organ system, definition, 31</td>
<td></td>
</tr>
<tr>
<td>orientation</td>
<td></td>
</tr>
<tr>
<td>grating, 96</td>
<td></td>
</tr>
<tr>
<td>thresholds, 96</td>
<td></td>
</tr>
<tr>
<td>of, see optical topography</td>
<td></td>
</tr>
<tr>
<td>optical topography, 214</td>
<td></td>
</tr>
<tr>
<td>paired stimulation, 304, 305</td>
<td></td>
</tr>
<tr>
<td>parameter setting theory (PS), 226</td>
<td></td>
</tr>
</tbody>
</table>
parohippocampal region
entorhinal, 268
parahippocampal, 268
perirhinal, 268
patients
Alzheimer’s disease, 36
imaging and, 35
stroke, 34
pavlovian fear
conditioning, 314
peak latencies, 139
perceptual learning,
definition, 71
3-line bisection, 71
properties, 71
top-down control, 68
perforant path (PP), 327, 328, 349
peripheral visual
stimuli, 126
phonetic processing, 127
phonological processing, 128
phonology
coronal (gesture), 160
features, distinctive, 161
process, 159–62
pioneering neural network
theory, 330
plasticity, 378
generating
connectivity, 378
induction of, 374, 377
induction of, at SC-CA1 and C/A-CA3 synapses, 329
of mossy fiber, 331, 349
peak, during development, 127
subsystems in language, 125–9
synaptic, 329, 330, 352, 363–5
positron emission tomography (PET), 36, 182
standard PET subtraction analysis, 194
post-natal development, 125
postsynaptic density (PSD), 328
PP, see perforant path (PP)
prefrontal cortex, 81
primary visual cortex (V1), 79, 80, 81
priming
repetition priming, 255–9
progressive fluent aphasia
a.k.a semantic dementia
phonology, 185–6
cross language research, 186
minimal pair judgment, 185
syntax, 186–7
stimulus conditions, patients, 187
vocabulary loss in speech production, 187–91
category fluency, 187
progressive nonfluent aphasia, 197
impaired speech production and working memory deficit, 198
phonological errors, 198
spoonerism, 197
prosodic bootstrapping hypothesis, 210
prosodic processing, 127, 141, 144, 149
Prozac, 7
PSD, see perforant path (PP)
quanta-level indeterminacy, 5, 19
randomness, 5
rational, 15
nonalgorithmic, skill-based nature, 16
receptive field, definition, 62
connections, horizontal effects, 63
gestat’s rule of contour saliency, 63, 64
dependency, 66
interaction fields, 66
facilitations, 67
iso-orientation rule, 63
minimum response field technique, 64
results, 73
receptive field (RF) size, 79, 82, 88
hypothesis, 86
monkeys, 87
relative recall index (RRI), 341, 343
repetition priming, see memory systems,
nondeclarative memory responsibility, 9–14, 19
defined, 9
and neuroscience, 19
retrograde amnesia, 270
reward and punishment, 2
RF, see receptive field (RF)
rhythm, signals and triggers
compliment head
head compliment parameter (HC), 226
integrate PS with theory of learning, see rhythm, signals and triggers, compliment head, head
compliment parameter (HC)
rodent vestibular hair epithelia, multiple Na⁺ channel type, 397–402
scalp electrical recording, 33 electrodes, 40 schizophrenia, 43 theory, Benes, 43 scopalamine, 37 secondary emotions, 17, 396 second language acquisition, 127 SEF, see supplementary eye fields (SEF) segmenting speech stream continuous speech rhythm, 223–4 self-control spectrum, 10 self-rated proficiency in English and Chinese, 134 semantic dementia, see progressive fluent aphasia a.k.a semantic dementia semantic processing, 130 violations, 139 accuracy detection in, 135 in phrase structure, 129 sensitive period, 126 argument against, 127 phonological processing, 127 subsystems in language, 129 sensory events fMRI, 33 sites/sources, 33–4 sources, 33–4 target, multiple, 34 sensory suppression RF hypothesis, 86 human cortex, 83 interactions, 83, 89 sequential stimuli, 84, 85, 90, 91 serotonin, 12 signals, see rhythm, signals and triggers simultaneous stimuli, 84, 88 single-cell recording, 88 in monkey, 88 neural response, 88 socialization, 20 social species features of, 2 parental care, 2 social unreliability, 2 sodium channels, over view, 386–8 α/β subunits TTX sensitivity/Cd2⁺ sensitivity., 388 sodium currents in hair cells, 390–7 hair isolation, 395 see also extracellular papain treatment in the inner ear, voltage-dependent, 385–405 less negatively inactivating, TTX sensitive, 390 negatively-inactivating, TTX-insensitive, 390 negatively-inactivating, TTX-sensitive, 390 resting potential, 394 reverse transcription polymerase chain reaction (RT-PCR), 393 TTX application, 394 songbirds, as model for neural mechanisms, 364 song learning sensorimotor phase, 364 sensory phase, 364, 366 speech, perception, 164–76 definition, 176 functional architecture, 154 linguistic basis allophonic variability, 159 constraints, sequencing, 158 distinctive features, role of, 163 importance of words, use of language, 155–6 phonology, process, 159–62 spoken language, words in, 157 words vs. speech sounds, 157 written language, words in, 156 neural basis acoustic-articulatory space, 167–8 empirical support/challenges, 174–6 functional anatomy, speech process, 168 functional asymmetry, AST model, 169–70 spectro-temporal representation, auditory cortex, 164–5 speech, lexical information, 165–6 speech process, properties, 164–76 see also neural basis, speech perception speech segmentation in bilinguals, 140–1 behavioral study, 141–5 event-related potential study, 145–7 speech stream, segment, 222–4 speech vs. backward speech, 212
Index 425

spiking, Na⁺ contribution
Ca²⁺ influx, 394
spiking in hair cells,
positively inactivating
Na⁺ currents, 397
SPL, see superior parietal
lobule (SPL)
stimuli, 38, 77, 363
competing vs. non-
competing, 78
factors affecting, 77
mutually suppressive, 85
preferred vs. non-
preferevd, 83
and responses, well-
defined, 299
response to neural, 79, 88
response to visual
congenitally deaf’s, 126
hearing individual, 126
salience of, 77, 102, 105
sensory suppression, 84
sentence, 134
simultaneous and
sequential, 84
song, 366
spatial, 38
suppression of competition
among multiple, 89
verbal, 38
visual, 38, 78, 82–9,
104, 105
stimulus-driven processes, 77
striate cortex, 84
the stroop task, 38
STS (Superior Temporal
Sulcus),
see also innate dispositions,
language
studies, generate use of
words, 40–1
superior occipital gyrus, 84
superior parietal lobule
(SPL), 84, 102, 105
supplementary eye fields
(SEF), 102
synaptic mechanisms, 363,
374–8
synaptic plasticity, 301, 329
Hebbian synaptic plasticity,
301, 302, 304
long-term, 311
short-term, 311
synaptic plasticity in
songbirds, singing and
song selectivity, 363–5
singing-related activity in
AFP, 371–3
song learning in
juveniles, 366–71
synaptogenesis, role of Na⁺/
Ca²⁺, 404
syntactic and semantic
processing
comparison of
performance on
sentence types, 142
hearing bilinguales, 133–4
anomalies, 134–7
closed- and open-class
words, 137–40
linguistic proficiency, 134
syntactic positive shift
(SPS), 137
syntactic processing, 128, 140
accuracy detection in
violations, 135
neural subsystem, 133
violations, 139
temporal integration window
alpha/gamma/theta band
activity, 170
data, neurophysiological, 171
oscillatory neuronal
activity, 170, 175
TEO, 82, 84, 87, 90, 91, 94–100
tests
functions 41
usage of words, 40
tetanic stimulation, 304
tetanus protocol, 305
tetrodotoxin (TTX), 386
thalamic plasticity, 308
top-down bias
attentional, 91, 94–5, 100–1
functional brain
imaging, 102–6
lesion studies, 101, 106
top down control, 68
inference, 74
top-down influences
attentional, 78
feedback signal, 81, 106
visual perception, 81
Tourette’s syndrome, 12
transmitters, 37
triggers, see rhythm, signals
and triggers
trisynaptic pathway, 328
TTX (tetrodotoxin), 386
unconditioned stimulus
(US), 299
uniqueness of
language, 206–11
brain specialization,
newborns
evidence from ot, 214–17
prototype device,
hitachi, see brain
specialization,
newborns
C/V distinction, see
consonant/vowel
distinction
innate dispositions,
language, 211–14
speech vs. backward
speech, 212
uniqueness (cont.)

STS (Superior Temporal Sulcus), 212

rhythm, signals and triggers, see rhythm, signals and triggers

rhythm to tune to language, neonates, 217

brain specialization, newborns, 214

Hebbian fashion, 208

innate disposition, 211–14

prosodic bootstrapping hypothesis, 210

PS theory, discussion, 206–7

segmenting the speech stream

continuous speech rhythm, 223–4

use of rhythm (language), neonates, see neonates, use of rhythm (language)

universal grammar (UH), 210

upper visual field (UVF) topography, 84

US, see unconditioned stimulus (US)

use of rhythm (language), neonates, 217–22

V1, see primary visual cortex (V1)

V2, 81, 84, 86, 89, 90

V3, 81

V4, 81, 84, 90, 94–100

V4A, 81, 84, 86, 90

V4 and TEO, role of, in filtration, 94

ventral lgmental dopamine system, 41

ventral occipitotemporal pathway, 81

ventral stream, 79, 80

vestibular ganglia, 402

visual cortex, 81

attentional effects, 90, 91

attentional response modulation, 88–94

baseline activity, 89–94

filtration, 89–91

human, 87, 94

in humans and monkeys, 78

neutral activity, 94

visual field impairment, 97

visual process, sensitive periods, 126

visual stimulation

absence of, 84, 91, 92, 93

extrastriate cortex, 84

presence of, 104, 105, 106

striate cortex, 84, 90, 93

visuospatial attention in humans and monkeys, cortical mechanisms of, 77–9

visuospatial neglect, 101

sodium currents in the hair cells, inner ear
goldfish saccule, 393

multiple Na\(^+\) channel types in rodent vestibular hair epithelia, 397–402

expression in the rat utricular epithelium, 10, 401–2

whole-cell Na\(^+\) currents, 402

Na\(^+\) currents in hair cells Na\(^+\) spikes by hair cells, 404

spiking, with negatively inactivating Na\(^+\) current, 397

see also voltage-gated currents

spiking, with positively inactivating Na\(^+\) current, 397

see also sodium currents in hair cells

role of Na\(^+\) currents in inner ear development, 402

Na\(^+\) currents in rodent hair cells decrease after birth, 402

possible roles of Na\(^+\) current in development, 403

sodium channels, overview, a subunits, 396

activation/inactivation course, 401

b subunits, 396

activation/inactivation course, 401
<table>
<thead>
<tr>
<th>Spiking in hair cells</th>
<th>Words</th>
<th>Phonology</th>
</tr>
</thead>
<tbody>
<tr>
<td>alligator basilar papilla</td>
<td>closed-class, 131, 137–40</td>
<td>process, 159–62</td>
</tr>
<tr>
<td>goldfish saccule</td>
<td>identification of allographic variability, 159</td>
<td>spoken language, 157</td>
</tr>
<tr>
<td>voltage-gated currents</td>
<td>constraints, sequencing, 158</td>
<td>vs. speech sounds, 157</td>
</tr>
<tr>
<td>temperature/extracellular papain</td>
<td>distinctive features, role of, 163</td>
<td>written language, 156</td>
</tr>
<tr>
<td>voluntary causes introspection</td>
<td>interpretation, articulatory, 162–3</td>
<td>open-class, 130, 137–40</td>
</tr>
</tbody>
</table>