HYDRODYNAMICS AND SOUND

This book is designed for a first graduate course in fluid dynamics. It focuses on knowledge and methods that find application in most branches of fluid mechanics and aims to supply a theoretical understanding that will permit sensible simplifications to be made in the formulation of problems and enable the reader to develop analytical models of practical significance. The study of simplified model problems can be used to guide experimental and numerical investigations. The first part (Chapters 1–4) is concerned entirely with the incompressible flow of a homogeneous fluid. Chapters 5 and 6 deal with dispersive waves and acoustics.

Professor Howe is in the Department of Aerospace and Mechanical Engineering at Boston University. He received his PhD in Continuum Mechanics from Imperial College, London. He has published more than 200 technical papers on fluid mechanics and acoustics and is the author of four books, including Acoustics of Fluid-Structure Interactions and Theory of Vortex Sound, both published by Cambridge University Press.
Hydrodynamics and Sound

M. S. HOWE

Boston University
In memoriam James Lighthill
Contents

Preface
page xv

1 Equations of Motion 1
1.1. The fluid state 1
1.2. The material derivative 1
1.3. Conservation of mass: Equation of continuity 2
1.4. Momentum equation 3
1.4.1. Relative motion of neighbouring fluid elements 3
1.4.2. Viscous stress tensor 5
1.4.3. Navier–Stokes equation 7
1.4.4. The Reynolds equation and Reynolds stress 7
1.5. The energy equation 8
1.5.1. Alternative treatment of the energy equation 9
1.5.2. Energy equation for incompressible flow 10
1.6. Summary of governing equations 11
1.7. Boundary conditions 12
Problems 1 12

2 Potential Flow of an Incompressible Fluid 14
2.1. Ideal fluid 14
2.2. Kelvin's circulation theorem 14
2.3. The velocity potential 16
2.3.1. Bernoulli's equation 16
2.3.2. Impulsive pressure 18
2.3.3. Streamlines and intrinsic equations of motion 18
2.3.4. Bernoulli's equation in steady flow 20
2.4. Motion produced by a pulsating sphere 21
2.5. The point source 22
2.6. Free-space Green’s function 24
2.7. Monopoles, dipoles, and quadrupoles 24
 2.7.1. The vibrating sphere 26
 2.7.2. Streamlines 28
 2.7.3. Far field of a monopole distribution of zero strength 29

2.8. Green’s formula 30
 2.8.1. Volume and surface integrals 30
 2.8.2. Green’s formula 32
 2.8.3. Sources adjacent to a plane wall 34

2.9. Determinancy of the motion 35
 2.9.1. Fluid motion expressed in terms of monopole or dipole distributions 37
 2.9.2. Determinancy of cyclic irrotational flow 39
 2.9.3. Kinetic energy of cyclic irrotational flow 40

2.10. The kinetic energy 41
 2.10.1. Converse of Kelvin's minimum-energy theorem 43
 2.10.2. Energy of motion produced by a translating sphere 43

2.11. Problems with spherical boundaries 45
 2.11.1. Legendre polynomials 45
 2.11.2. Velocity potential of a point source in terms of Legendre polynomials 50
 2.11.3. Interpretation in terms of images 52

2.12. The Stokes stream function 53
 2.12.1. Stream function examples 55
 2.12.2. Rankine solids 56
 2.12.3. Rankine ovoid 58
 2.12.4. Drag in ideal flow 58
 2.12.5. Axisymmetric flow from a nozzle 60
 2.12.6. Irrotational flow from a circular cylinder 63
 2.12.7. Borda’s mouthpiece 65

2.13. The incompressible far field 67
 2.13.1. Deductions from Green’s formula 68
 2.13.2. Far field produced by motion of a rigid body 69
 2.13.3. Inertia coefficients 70
 2.13.4. Pressure in the far field 70

2.14. Force on a rigid body 71
 2.14.1. Moment exerted on a rigid body 73

2.15. Sources near solid boundaries 75
 2.15.1. The reciprocal theorem 76

2.16. Far-field Green’s function 78
 2.16.1. The Kirchhoff vector 80
 2.16.2. Far-field Green’s function for a sphere 80
CONTENTS

2.17. Far-field Green’s function for cylindrical bodies 84
2.17.1. The circular cylinder 85
2.17.2. The rigid strip 86
2.18. Symmetric far-field Green’s function 89
2.18.1. Far field of an arbitrarily moving body 90
2.19. Far-field Green’s function summary and special cases 91
2.19.1. General form 91
2.19.2. Airfoil of variable chord 92
2.19.3. Projection or cavity on a plane wall 93
2.19.4. Rankine ovoid 94
2.19.5. Circular aperture 95
2.19.6. Circular disc 96
Problems 2 96

3 Ideal Flow in Two Dimensions 102

3.1. Complex representation of fluid motion 102
3.1.1. The stream function 102
3.1.2. The complex potential 104
3.1.3. Uniform flow 104
3.1.4. Flow past a cylindrical surface 105
3.2. The circular cylinder 106
3.2.1. Circle theorem 106
3.2.2. Uniform flow past a circular cylinder 106
3.2.3. The line vortex 109
3.2.4. Circular cylinder with circulation 110
3.2.5. Equation of motion of a cylinder with circulation 112
3.3. The Blasius force and moment formulae 115
3.3.1. Blasius's force formula for a stationary rigid body 116
3.3.2. Blasius's moment formula for a stationary rigid body 117
3.3.3. Kutta–Joukowski lift force 117
3.3.4. Leading-edge suction 118
3.4. Sources and line vortices 119
3.4.1. Line vortices 122
3.4.2. Motion of a line vortex 122
3.4.3. Kármán vortex street 127
3.4.4. Kinetic energy of a system of rectilinear vortices 127
3.5. Conformal transformations 128
3.5.1. Transformation of Laplace’s equation 129
3.5.2. Equation of motion of a line vortex 132
3.5.3. Numerical integration of the vortex path equation 133
3.6. The Schwarz–Christoffel transformation 135
3.6.1. Irrotational flow from an infinite duct 138
3.6.2. Irrotational flow through a wall aperture 140
3.7. Free-streamline theory 142
 3.7.1. Coanda edge flow 142
 3.7.2. Mapping from the \(w \) plane to the \(t \) plane 147
 3.7.3. Separated flow through an aperture 147
 3.7.4. The wake of a flat plate 151
 3.7.5. Flow past a curved boundary 152
 3.7.6. The hodograph transformation formula 158
 3.7.7. Chaplygin's singular point method 159
 3.7.8. Jet produced by a point source 160
 3.7.9. Deflection of trailing-edge flow by a source 161
3.8. The Joukowski transformation 167
 3.8.1. The flat-plate airfoil 170
 3.8.2. Calculation of the lift 173
 3.8.3. Lift calculated from the Kirchhoff vector force formula 173
 3.8.4. Lift developed by a starting airfoil 174
3.9. The Joukowski airfoil 175
 3.9.1. Streamline flow past an airfoil 176
3.10. Separation and stall 179
 3.10.1. Linear theory of separation 180
3.11. Sedov's method 183
 3.11.1. Boundary conditions 184
 3.11.2. Sedov's formula 185
 3.11.3. Tandem airfoils 187
 3.11.4. High-lift devices 190
 3.11.5. Plain flap or aileron 192
 3.11.6. Point sources and vortices 192
 3.11.7. Flow through a cascade 193
3.12. Unsteady thin-airfoil theory 195
 3.12.1. The vortex sheet wake 195
 3.12.2. Translational oscillations 197
 3.12.3. The unsteady lift 198
 3.12.4. Leading-edge suction force 199
 3.12.5. Energy dissipated by vorticity production 201
 3.12.6. Hankel function formulae 202
Problems 3 203

4 Rotational Incompressible Flow 211
 4.1. The vorticity equation 211
 4.1.1. Vortex lines 212
 4.1.2. Vortex tubes 212
 4.1.3. Movement of vortex lines: Helmholtz's vortex theorem 213
4.1.4. Crocco’s equation 214
4.1.5. Convection and diffusion of vorticity 215
4.1.6. Vortex sheets 218

4.2. The Biot–Savart law 221
4.2.1. The far field 223
4.2.2. Kinetic energy 227
4.2.3. The Biot–Savart formula in the presence of an internal boundary 228
4.2.4. The Biot–Savart formula for irrotational flow 229

4.3. Examples of axisymmetric vortical flow 232
4.3.1. Circular vortex filament 232
4.3.2. Rate of production of vorticity at a nozzle 233
4.3.3. Blowing out a candle 235
4.3.4. Axisymmetric steady flow of an ideal fluid 236
4.3.5. Hill’s spherical vortex 237

4.4. Some viscous flows 239
4.4.1. Diffusion of vorticity from an impulsively started plane wall 239
4.4.2. Diffusion of vorticity from a line vortex 240
4.4.3. Creeping flow 242
4.4.4. Motion of a sphere at very small Reynolds number 242
4.4.5. The Oseen approximation 245
4.4.6. Laminar flow in a tube (Hagen–Poiseuille flow) 247
4.4.7. Boundary layer on a flat plate; Kármán momentum integral method 249

4.5. Force on a rigid body 253
4.5.1. Surface force in terms of the impulse 254
4.5.2. The Kirchhoff vector force formula 256
4.5.3. The Kirchhoff vector force formula for irrotational flow 258
4.5.4. Arbitrary motion in a viscous fluid 258
4.5.5. Body moving without rotation 259
4.5.6. Surface force in two dimensions 261
4.5.7. Bluff body drag at high Reynolds number 261
4.5.8. Modelling vortex shedding from a sphere 265
4.5.9. Force and impulse in fluid of non-uniform density 270
4.5.10. Integral identities 271

4.6. Surface moment 273
4.6.1. Moment for a non-rotating body 273
4.6.2. Airfoil lift, drag, and moments 274

4.7. Vortex–surface interactions 276
4.7.1. Pressure expressed in terms of the total enthalpy 276
4.7.2. Equation for B 277
4.7.3. Solution of the B equation 278
4.7.4. The far field 279
Problems 4 281

5 Surface Gravity Waves 286

5.1. Introduction 286
5.1.1. Conditions at the free surface 286
5.1.2. Wave motion within the fluid 287
5.1.3. Linearised approximation 288
5.1.4. Time harmonic, plane waves on deep water 288
5.1.5. Water of finite depth 290

5.2. Surface wave energy 291
5.2.1. Wave-energy density 293
5.2.2. Wave-energy flux 294
5.2.3. Group velocity 295

5.3. Viscous damping of surface waves 297
5.3.1. The interior damping 297
5.3.2. Boundary-layer damping 298
5.3.3. Comparison of boundary-layer and internal damping for long waves 299

5.4. Shallow-water waves 299
5.4.1. Waves on water of variable depth 300
5.4.2. Shallow-water Green’s function 301
5.4.3. Waves generated by a localised pressure rise 302
5.4.4. Waves approaching a sloping beach 307

5.5. Method of stationary phase 309
5.5.1. Formulation of initial-value dispersive-wave problems 309
5.5.2. Evaluation of Fourier integrals by the method of stationary phase 311
5.5.3. Numerical results for the surface displacement 313
5.5.4. Conservation of energy 315
5.5.5. Rayleigh’s proof that energy propagates at the group velocity 317
5.5.6. Surface wave-energy equation 318
5.5.7. Waves generated by a submarine explosion 319

5.6. Initial-value problems in two surface dimensions 321
5.6.1. Waves generated by a surface elevation symmetric about the origin 322
5.6.2. The energy equation in two dimensions 324

5.7. Surface motion near a wavefront 325
5.7.1. One-dimensional waves 325
5.7.2. Waves generated by motion of the seabed 328
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.3.</td>
<td>Tsunami produced by an undersea earthquake</td>
<td>332</td>
</tr>
<tr>
<td>5.8</td>
<td>Periodic wave sources</td>
<td>333</td>
</tr>
<tr>
<td>5.8.1.</td>
<td>One-dimensional waves</td>
<td>334</td>
</tr>
<tr>
<td>5.8.2.</td>
<td>Periodic sources in two surface dimensions</td>
<td>336</td>
</tr>
<tr>
<td>5.8.3.</td>
<td>The surface wave power</td>
<td>339</td>
</tr>
<tr>
<td>5.8.4.</td>
<td>Surface wave amplitude</td>
<td>340</td>
</tr>
<tr>
<td>5.9</td>
<td>Ship waves</td>
<td>341</td>
</tr>
<tr>
<td>5.9.1.</td>
<td>Moving line pressure source</td>
<td>342</td>
</tr>
<tr>
<td>5.9.2.</td>
<td>Wave-making resistance</td>
<td>343</td>
</tr>
<tr>
<td>5.9.3.</td>
<td>Moving point-like pressure source</td>
<td>345</td>
</tr>
<tr>
<td>5.9.4.</td>
<td>Plotting the wave crests</td>
<td>349</td>
</tr>
<tr>
<td>5.9.5.</td>
<td>Behaviour at the caustic</td>
<td>351</td>
</tr>
<tr>
<td>5.9.6.</td>
<td>Wave-making power</td>
<td>352</td>
</tr>
<tr>
<td>5.9.7.</td>
<td>Wave amplitude calculated from the power</td>
<td>354</td>
</tr>
<tr>
<td>5.10.</td>
<td>Ray theory</td>
<td>354</td>
</tr>
<tr>
<td>5.10.1.</td>
<td>Kinematic theory of wave crests</td>
<td>354</td>
</tr>
<tr>
<td>5.10.2.</td>
<td>Ray tracing in an inhomogeneous medium</td>
<td>357</td>
</tr>
<tr>
<td>5.10.3.</td>
<td>Refraction of waves at a sloping beach</td>
<td>357</td>
</tr>
<tr>
<td>5.11.</td>
<td>Wave action</td>
<td>364</td>
</tr>
<tr>
<td>5.11.1.</td>
<td>Variational description of a fully dispersed wave group</td>
<td>365</td>
</tr>
<tr>
<td>5.11.2.</td>
<td>Fully dispersed waves in a non-uniformly moving medium</td>
<td>366</td>
</tr>
<tr>
<td>5.11.3.</td>
<td>General wave-bearing media</td>
<td>369</td>
</tr>
<tr>
<td>5.12.</td>
<td>Diffraction of surface waves by a breakwater</td>
<td>373</td>
</tr>
<tr>
<td>5.12.1.</td>
<td>Diffraction by a long, straight breakwater</td>
<td>373</td>
</tr>
<tr>
<td>5.12.2.</td>
<td>Solution of the diffraction problem</td>
<td>374</td>
</tr>
<tr>
<td>5.12.3.</td>
<td>The surface wave pattern</td>
<td>377</td>
</tr>
<tr>
<td>5.12.4.</td>
<td>Uniform asymptotic approximation: Method of steepest descents</td>
<td>379</td>
</tr>
<tr>
<td></td>
<td>Problems 5</td>
<td>384</td>
</tr>
<tr>
<td>6</td>
<td>Introduction to Acoustics</td>
<td>390</td>
</tr>
<tr>
<td>6.1.</td>
<td>The wave equation</td>
<td>390</td>
</tr>
<tr>
<td>6.1.1.</td>
<td>The linear wave equation</td>
<td>391</td>
</tr>
<tr>
<td>6.1.2.</td>
<td>Plane waves</td>
<td>392</td>
</tr>
<tr>
<td>6.1.3.</td>
<td>Speed of sound</td>
<td>393</td>
</tr>
<tr>
<td>6.2.</td>
<td>Acoustic Green's function</td>
<td>395</td>
</tr>
<tr>
<td>6.2.1.</td>
<td>The impulsive point source</td>
<td>395</td>
</tr>
<tr>
<td>6.2.2.</td>
<td>Green's function</td>
<td>396</td>
</tr>
<tr>
<td>6.2.3.</td>
<td>Retarded potential</td>
<td>397</td>
</tr>
<tr>
<td>6.2.4.</td>
<td>Sound from a vibrating sphere</td>
<td>397</td>
</tr>
<tr>
<td>6.2.5.</td>
<td>Acoustic energy flux</td>
<td>399</td>
</tr>
</tbody>
</table>
CONTENTS

6.2.6. Green's function in one space dimension: Method of descent 400

6.2.7. Waves generated by a one-dimensional volume source 401

6.3. Kirchhoff's formula 401

6.4. Compact Green’s function 403

6.4.1. Generalized Kirchhoff formula 403

6.4.2. The time harmonic wave equation 404

6.4.3. The compact approximation 404

6.4.4. Rayleigh scattering: Scattering by a compact body 407

6.5. One-dimensional propagation through junctions 409

6.5.1. Continuity of volume velocity 410

6.5.2. Continuity of pressure 410

6.5.3. Reflection and transmission at a junction 411

6.6. Branching systems 413

6.6.1. Fundamental formula 414

6.6.2. Energy transmission 415

6.6.3. Acoustically compact cavity 416

6.6.4. The Helmholtz resonator 417

6.6.5. Acoustic filter 418

6.6.6. Admittance of a narrow constriction 419

6.7. Radiation from an open end 421

6.7.1. Rayleigh’s method for low-frequency sound 421

6.7.2. The reflection coefficient 423

6.7.3. Admittance of the open end 423

6.7.4. Open-end input admittance 424

6.7.5. Flanged opening 426

6.7.6. Physical significance of the end correction 428

6.7.7. Admittance of a circular aperture 431

6.8. Webster's equation 432

6.9. Radiation into a semi-infinite duct 435

6.9.1. The compact Green’s function 435

6.9.2. Wave generation by a train entering a tunnel 439

6.10. Damping of sound in a smooth-walled duct 445

6.10.1. Time harmonic propagation in a duct 446

6.10.2. The viscous contribution 447

6.10.3. The thermal contribution 449

6.10.4. The thermo-viscous damping coefficient 450

Problems 6 450

Bibliography 455

Index 457
Fluid mechanics impinges on practically all areas of human endeavour. But it is not easy to grasp its principles and ramifications in all of its diverse manifestations. Industrial applications usually require the numerical solution of the equations of motion of a fluid on a very large scale, perhaps coupled in a complicated manner to equations describing the response of solid structures in contact with the fluid. There has developed a tendency to regard the subject as defined solely by its governing equations whose treatment by numerical methods can furnish the solution of any problem.

There are actually many practical problems that are not yet amenable to full numerical evaluation in a reasonable time, even on the fastest of present-day computers. It is therefore important to have a proper theoretical understanding that will permit sensible simplifications to be made when formulating a problem. As in most technical subjects such understanding is acquired by detailed study of highly simplified ‘model problems’. Many of these problems fall within the realm of classical fluid mechanics, which is often criticised for its emphasis on ideal fluids and potential flow theory. The criticism is misplaced, however: For example, potential flow methods provide a good first approximation to airfoil theory, and ‘free-streamline’ theory (pioneered in its modern form by Chaplygin) permits the two-dimensional modelling of complex flows involving separation and jet formation.

There is a certain body of knowledge and methods that finds application in most branches of fluid mechanics. This book aims to supply this basic material and to present the most important theoretical methods that will enable the reader to develop analytical models of practical significance. Such analyses can be used to guide more detailed experimental and numerical investigations. The first part (Chapters 1–4) is concerned entirely with the incompressible flow of a homogeneous fluid. It was written for the Boston University introductory graduate-level course ‘Advanced Fluid Mechanics’. The remaining chapters, 5 and 6, deal with dispersive waves and acoustics and are unashamedly inspired by James Lighthill’s masterpiece Waves in Fluids.

M. S. Howe