The Cambridge Companion to Electronic Music

Musicians are always quick to adopt and explore new technologies. The fast-paced changes wrought by electrification, from the microphone via the analogue synthesiser to the laptop computer, have led to a wide diversity of new musical styles and techniques. Electronic music has grown to a broad field of investigation, taking in historical movements such as musique concrète and elektronische musik, and contemporary trends such as electronic dance music and electronica. A fascinating array of composers and inventors have contributed to a diverse set of technologies, practices and music. This book brings together some novel threads through this scene, from the viewpoint of researchers at the forefront of the sonic explorations empowered by electronic technology. The chapters provide accessible and insightful overviews of core topic areas and uncover some hitherto less publicised corners of worldwide movements. Recent areas of intense activity such as audiovisuals, live electronic music, interactivity and network music are actively promoted.
The Cambridge Companion to

Electronic Music

EDITED BY
Nick Collins and Julio d’Escriván
Contents

List of illustrations and figures [page vii]
Notes on contributors [ix]
Acknowledgements [xii]
Chronology [xiv]

Introduction Nick Collins and Julio d’Escriván [1]

Part I • Electronic music in context
1 The origins of electronic music Andrew Hugill [7]
2 Electronic music and the studio Margaret Schedel [24]
3 Live electronic music Nicolas Collins [38]
4 A history of programming and music Ge Wang [55]

Artists’ statements I: [72]
Laurie Spiegel [72]
Yasunao Tone [73]
John Oswald [74]
Mathias Gmachl (Farmer’s Manual) [75]
Erdem Helvacioglu [76]
Pauline Oliveros [76]
Chris Jeffs [77]
Rodrigo Sigal [77]
Mira Calix [78]
Denis Smalley [78]
Seong-Ah Shin [82]
Carsten Nicolai [82]
Warren Burt [84]
Max Mathews [85]

Part II • Electronic music in practice
5 Interactivity and live computer music Sergi Jordà [89]
6 Algorithmic composition Karlheinz Essl [107]
7 Live audiovisuals Amy Alexander and Nick Collins [126]
8 Network music Julian Rohrhuber [140]
9 Electronic music and the moving image Julio d’Escriván [156]
Contents

10 Musical robots and listening machines Nick Collins [171]

Artists’ statements II: [185]
Kevin Saunderson [185]
Kanta Horio [185]
Donna Hewitt [186]
Alejandro Viñao [186]
Bubblyfish [188]
Barry Truax [189]
Lukaz Ligeti (Burkina Electric) [191]
Christina Kubisch [191]
Murat Ertel [192]
Adina Izarra [193]
CybOrk [193]
Francis Dhomont [194]
David Behrman [195]
Kevin Blechdom (Kristin Erickson) [196]
Karlheinz Stockhausen [198]
George E. Lewis [198]

Part III • Analysis and synthesis

11 Computer generation and manipulation of sounds Stefania Serafin [203]
12 The psychology of electronic music Petri Toiviainen [218]
13 Trends in electroacoustic music Natasha Barrett [232]

Notes [256]
References [264]
Index [280]
Illustrations and figures

1.1 Russolo’s intonarumori [19]
1.2 Percy Grainger’s Kangaroo Pouch Machine (courtesy of The Percy Grainger Society/Estate) [21]
1.3 Le Corbusier, Iannis Xenakis, Edgard Varèse: Philips Pavilion, 1958 [22]
3.1 Live performance of Speaker Swinging at the Music Gallery, Toronto, 1987 [51]
4.1 A simple Max/MSP patch which synthesises the vowel ‘ahh’ [65]
4.2 The SuperCollider programming environment in action [67]
4.3 The ChucK programming language and environment [69]
4.4 slub in action (photo by Renate Wieser) [70]
5.1 Michel Waisvisz performs with The Hands (photo: Carla van Tijn) [101]
7.1 VJ Olga Mink (Oxygen) (photo: Mark Trash) [134]
8.1 The Wilmington based Tel-musici Company, from the 18 December 1909 issue of Telephony [141]
8.2 Flyer by Rich Gold for the network ensemble The League from 1978, showing the different types of musical data exchange [145]
8.3 Adapted from Shannon’s ‘schematic diagram of a general communication system’ (Shannon 1948) [148]
8.4 The network music ensemble The Hub, 1989 (top photo: Jim Block) and 2006 (bottom photo: Chianan Yen) [151]
8.5 Shared object [152]
8.6 Distributed object [153]
11.1 A schematic of Hsu’s system [176]
11.2 The Karplus–Strong algorithm [213]
11.3 The exciter-resonator approach to physical modelling synthesis [214]
12.1 (a) Schematic presentation of the cochlea; (b) Excitation pattern of basilar membrane for high, medium, and low frequencies; (c) Auditory pathway; 1. Auditory nerve; 2. Cochlear nucleus;
viii List of illustrations and figures

12.2 (a) Interaural Time Difference. The distance from the sound source (black circle) to the right ear is \(d = r \theta + r \sin \theta \) longer than to the left ear, where \(r \) denotes the radius of the head and \(\theta \) the azimuth of the sound source. (b) Interaural Level Difference. Head shadowing reduces the intensity of the sound arriving to the right ear [221]

12.3 (a) Grouping by proximity. A slow sequence of tones with alternating frequencies (left) is perceived as a single stream; the same sequence played twice as fast is perceived as two separate streams; (b) Grouping by common fate. A collection of partials with no frequency modulation is perceived as a single tone (left); when frequency modulation is introduced, tones with similar FM pattern are grouped together, resulting in a percept of three separate tones (right); (c) Principle of ‘old-plus-new heuristic’. Two frequency slides are perceived as separate tones (left); when a tone burst is played between the slides, they are perceived as a single tone [225]

12.4 Response of a resonating oscillator bank to an excerpt from the Scottish folk melody ‘Auld Lang Syne’: a) waveform; b) output of an onset detector; c) outputs of resonating oscillators; d) summed output of all oscillators [230]
Notes on contributors

Amy Alexander is Assistant Professor of Visual Arts at the University of California, San Diego. Her artwork spans the fields of digital media art and audiovisual performance and has been presented on the Internet, in clubs and on the street, as well as in festivals and museums. Her projects include *The Multi-Cultural Recycler* (1996), *theBot* (2000), *CueJack* (2001), *CyberSpaceLand* (2003), *Scream* (2005) and *SVEN: Surveillance Video Entertainment Network* (2006). She is also a co-founder of the Runme.org software art repository and is active in curating and writing about software art.

Natasha Barrett (UK 1972) works as a freelance composer and performer of acousmatic and live electroacoustic music. Her compositional output consists of works for instruments and live electronics, sound installations, dance, theatre, and animation projects, but all energy stems from her acousmatic approach to sound and its spatio-musical potential. Barrett’s projects are frequently commissioned from international organisations and her work has received awards in many of the prominent electroacoustic music competitions. In 2006 she received the Nordic Council Music Prize. Since completing her doctoral composition studies in London (1998) she has lived in Oslo, Norway. For more information: http://www.notam02.no/~natashab

Nick Collins (1975) is a lecturer in computer music at the University of Sussex, and has indulged in both mathematics and instrumental composition in the past. His interests run the gamut of topics in electronic music, but particular specialisms include algorithmic composition, live electronics, machine listening and interactive music systems. He occasionally tours the world as the non-Swedish half of the Swedish audiovisual laptop duo klipp av.

Nicolas Collins studied composition with Alvin Lucier, worked for many years with David Tudor, and has collaborated with soloists and ensembles around the world. He lived most of the 1990s in Europe, where he was Visiting Artistic Director of Stichting STEIM (Amsterdam), and a DAAD composer-in-residence in Berlin. He is a Professor in the Department of Sound at the School of the Art Institute of Chicago, and Editor-in-Chief of the Leonardo Music Journal. Recent recordings are available on PlateLunch, Periplum and Apestaartje. His book, *Handmade Electronic Music – The Art of Hardware Hacking*, was published by Routledge in 2006.

Julio d’Escriván is a composer who uses music technology, both for concert music, and in its applications to the moving image. He has twice won prizes at the International Electroacoustic Music Competition of Bourges, France. His electroacoustic music has been recorded, broadcast and performed in Europe and the Americas. He has worked extensively in music for TV advertising, documentaries and film with
Karlheinz Essl was born in 1960 in Vienna. Austrian composer, improviser and performer. He studied composition with Friedrich Cerha and musicology at the University of Vienna (doctorate 1989, with a thesis on Anton Webern). Besides writing experimental instrumental music, he performs on his own computer-based electronic instrument, develops algorithmic composition software and creates generative sound and video environments. From 1990–4 he was composer-in-residence at the Darmstadt summer courses, and from 1992–3 he worked as a commissioned composer at IRCAM/Paris. In the period 1995–2006 he taught ‘algorithmic composition’ at the Bruckner-University in Linz. In 2007 he will become professor of composition at the University of Music and Performing Arts in Vienna.

Andrew Hugill (1957) is Director of the Institute Of Creative Technologies (IOCT) at De Montfort University, Leicester. Between 1976 and 1980, he studied composition with Roger Marsh at the University of Keele. After university he earned a living as a music copyist and as musical assistant at the Opéras de Lyon and Paris. Hugill’s compositions have been performed and broadcast worldwide. *Symphony for Cornwall* (1999) used the internet in a ground-breaking way. Hugill’s research is wide ranging and includes ’pataphysics, which is rooted in French literature. He is an Associate Researcher of the Université de Paris, Sorbonne, and his 2006 CD and booklet entitled *’Pataphysics* has received rave reviews in almost every European language.

Sergi Jordà (1961), digital luthier (*FMOL, reacTable . . .*) and improviser, likes to invent new digital musical instruments without forgetting to make music with them. His music has been released on various labels and compilations (Hazard Records, SGAE, MIT Press . . .), he has composed for different instrumental setups (including a brass band) and for films, but he prefers the immediacy and volatility of free improvisation. During the 1990s, he worked extensively in performances and installations in collaboration with other artists (La Fura dels Baus, Marcel.Lli Antúnez . . .). He holds a Ph.D. in digital communication and is a researcher of the Music Technology Group of the Pompeu Fabra University, where he teaches computer music, audio programming, HCI and interactive media arts. He has written many articles and two books, and has given workshops, lectured and performed though Europe, Asia and America.

Julian Rohrhuber is a German artist and theorist, working in the fields of cultural theory, philosophy and media art. His art projects include installations and performances, film sound tracks, a system for interactive sound programming, and various collaborative and network art pieces. He currently works in a research project at the University of Cologne, and at the Academy of Media Arts Cologne, where he teaches algorithmic acoustics and works on art theory, programming and philosophy.

Margaret Anne Schedel is a composer and cellist specialising in the creation and performance of ferociously interactive media. While working towards a DMA in music composition at the University of Cincinnati, her thesis, an interactive multimedia opera, *A King Listens*, premiered at the Cincinnati Contemporary Arts Center. She is working towards a certificate in Deep Listening and serves as the
xi Notes on contributors

musical director for Kinesthetech Sense. Margaret sits on the boards of the BEAM Foundation, the EMF Institute, the ICMA, NWEAMO, Organised Sound, and the Women’s Audio Mission. Usually found in the San Francisco bay area, she runs workshops for Making Things.

Stefania Serafin is currently associate professor in sound modelling at Aalborg University in Copenhagen. She holds a Ph.D. in Computer Based Music Theory and Acoustics from CCRMA, Stanford University, and a Master in Acoustics, Signal Processing and Computer Science from IRCAM in Paris. She has been visiting researcher at Cambridge University, Stanford University and KTH in Stockholm, and visiting professor at the University of Virginia. Stefania has published her research on sound synthesis by physical models in the *Computer Music Journal*, the *Journal of New Music Research*, *Organised Sound*, and *IEEE Transactions of Speech and Audio Processing*, and she presents regularly at the International Computer Music Conference (ICMC), New Interfaces for Musical Expression (NIME), Digital Audio Effects (DAFX), and musical acoustics conferences.

Petri Toivainen is a professor of music at the University of Jyväskylä, Finland, with a specialisation in music cognition. He has published numerous articles on computational modelling of music perception and cognition. Currently his research focuses on computational music analysis, music and movement, and modelling of musical emotions. He is the head of the Finnish Centre of Excellence in Interdisciplinary Music Research, located at the Universities of Jyväskylä and Helsinki.

Ge Wang received his B.Sc. in computer science from Duke University in 2000 and is a Ph.D. candidate studying with Perry Cook in Computer Science at Princeton University. Ge conducts research in computer music languages, interactive systems for sound synthesis/analysis and musical composition/performance, visualisation of sound, interface design, new performance ensembles (e.g. the Princeton Laptop Orchestra), live coding, and methodologies for education in computer science, computer music, and new media. Ge also composes and performs via various electroacoustic and computer-mediated means.
Acknowledgements

So begins a round of thanks to many individuals, and most especially, those we’ve inevitably forgotten to mention. The editors wish to thank all of the contributors to this book who’ve put up with our requests and editing. Without the chapter authors and the artists who have kindly provided statements, there would hardly be any book to have the honour of editing!

We also have to say a big thank you specifically to Vicki Cooper, Becky Jones, Helen Waterhouse, Jo Breeze, Michael Downes and all others associated with the production of the book at Cambridge University Press.

For external reviews of chapters we very much appreciate the time and effort of Robert Rowe, Chris Brown, Fredrik Olofsson, Bill Hsu, Alberto de Campo, Bob Gluck, Brian Kane, John Hawks, Michael Scroggins, Curtis Roads and Jøran Rudi. Additional proofreading and comments were provided by a number of the chapter authors.

For assistance with obtaining artists’ statements, many thanks to Terumi Narushima, Joana Seguro, Daniel Klemm, Sharen Norden, Kathinka Pasveer, and of course to the various chapter authors, friends and enemies who themselves suggested people and helped us to get in contact with them.

Karlheinz Essl wishes to thank Florian Cramer (Rotterdam) for his attendance to discuss the history of algorithmic thinking in philosophy and literature and Jennifer Walshe (Berlin/New York) for proofreading the manuscript.

Meg Schedel owes a debt of gratitude to her proofreading parents, Rita and Charles Schedel.

Julian Rohrhuber appreciates the immensely useful advice from, and acknowledges the inspirations of, his colleagues. He’d like to thank Anthony Moore, Alberto de Campo, Renate Wieser, Chris Brown, Julio d’Escriván and Nick Collins for their generous interest in his article. He’d also like to express gratitude to Kurd Alsleben, Antje Eske, Jin Hyun Kim, Hannes Hözl, Alex McLean, Frank Wörler, Guy van Belle, Georg Hajdu, Maarten Bullynck and many others, who pointed out numerous interesting aspects of networks and network art.

Ge Wang wishes to extend hearty thanks to Perry Cook for his teaching and insights on the history of programming and music, to Ananya Misra for providing invaluable feedback from beginning to end, to Mark Ballora for his excellent online history of computer music, to Max Mathews for information and perspective, and to Rebecca Fiebrink, Spencer Salazar and Matt Hoffman for their support.

Nick Collins thanks everyone who suffered any editorial attention from him, and acknowledges with great respect and warmth his collaborators and colleagues in the field. He particularly welcomes the support and essential input of his co-editor. He also wishes to extend a special thank you to the third person.
xiii Acknowledgements

Julio d’Escriván wishes to thank Julian Rohrhuber for his review and suggestions. Also a special thanks to his co-editor, for roping him into this wonderful project and for his invaluable constructive criticism. A warm thanks to Sue Guilmurray from the university library at ARU, Cambridge. And … very especially he wishes to acknowledge the love, patience and support of Milly, Isa, Mari, Emi and Ana throughout this project.
Chronology

569–475 BC Pythagoras leads the elitist mathematikoi and akousmatikoi
1026 Guido d’Arezzo’s vowel-to-pitch mapping procedure for composing melodies for texts
1626 Francis Bacon describes the ‘sound-house’ in The New Atlantis
1734 Louis Bertrand Castel builds a prototype clavecin oculaire, the first light organ
1738 Jacques de Vaucanson’s flautist automaton is exhibited
1757 Johann Philipp Kirnberger’s Allezeit fertiger Polonoi sen und Menuett encomponist (‘The always ready Polonaise and Menuet Composer’), a musical dice game
1761 Jean-Baptiste Delaborde builds the Clavecin Electrique in Paris
1761 Innocenzo Manzetti invents a ‘speaking telegraph’ for his musical automaton
1843 Lady Lovelace describes the possible musical applications for Charles Babbage’s machine in The Sketch of the Analytical Engine
1857 Alexander Bell’s (controversial) telephone patent
1857 Leon Scott invents the phononautograph
1857 Innocenzo Manzetti invents a ‘speaking telegraph’ for his musical automaton
1877 Co-invention by Charles Cros and Thomas Edison of the phonograph
1897 Thaddeus Cahill patents the Art of and Apparatus for Generating and Distributing Music Electronically
1906 Cahill finally builds the Telharmonium
1909 The Tel-musici Company combine a telephone exchange with a music room; they are bankrupt within a few years, just like Cahill
1909 Lee De Forest invents the triode vacuum tube (which he calls the Audion), allowing controlled amplification; ironically, Cahill could have used this invention to make the Telharmonium much smaller!
1909 Ottorino Respighi combines a phonograph playing alongside an orchestra in Pini di Roma.
Chronology

1928 Fritz Fleumer invents the magnetic tape recorder in Germany
Maurice Martenot invents the Ondes Martenot

1929 Friedrich Trautwein invents the Trautonium

1931 First electroacoustic montage is created by the sound department of Paramount Studios in Hollywood, for the film Jekyll and Hyde

1932 In Oskar Fischinger's film, Tönende Ornamente (Ornament Sound), the soundtrack is created by drawing directly onto the optical soundtrack

1933 The theremin is used by composer Max Steiner to expand the timbral palette of the orchestra in the film King Kong

1936 Varèse publishes his manifesto The Liberation of Sound

1937 John Cage delivers his lecture The Future of Music: CREDO

1938 Orson Welles' War of the Worlds radio play successfully deceives its audience into believing a Martian invasion is taking place

1939 Cage begins working with live electronic sound in his piece Imaginary Landscape No. 1

1944 Egyptian-born Halim El-Dabh experiments by electronically processing recordings made with a wire recorder, a medium that predated tape

1946 The Schillinger System of Musical Composition is published posthumously
Raymond Scott writes the patent disclosure for the 'orchestra machine'

1948 At the French National Radio-Television (RTF), Pierre Schaeffer experiments with mixing pre-recorded sources on various turntables and creates Etude aux Chemins de Fer. The RTF studios host the Groupe de Recherches Musicales (GRM)
Claude Elwood Shannon publishes A Mathematical Theory of Communication

1949 Pierre Schaeffer and Pierre Henry compose Symphonie pour un homme seul, a landmark in musique concrète

1951 The Studio für Elektronische Musik at West German National Radio (WDR) is founded
Percy Grainger invents the Kangaroo Pouch Machine
The Columbia Tape Music Center, in New York, is started by Luenning and Ussachevsky. It would later become the Columbia–Princeton Electronic Music Center in 1959
Louis and Bebe Barron compose Heavenly Menagerie in their studio, months before the more famous Cologne Studio is established
Bernard Herrmann uses theremins as main instruments with the film orchestra in his score for The Day the Earth Stood Still
Schaeffer investigates spatialisation with the potentiomètre d’espace

1952 Schaeffer publishes a syntax for musique concrète in the treatise Esquisse d’un solfège concrète
Cage composes Williams Mix; the realisation takes a team of tape splicers (in reality, Louis and Bebe Barron) many months
xvi Chronology

1953 In Milan, the Studio di Fonologia is established. In Tokyo the Electronic Music Studio for Japan Radio (NHK) is opened

 Herbert Eimert composes Struktur 8

1950–4 Varèse composes Déserts, which combines an ensemble of live instrumentalists with tape

1955–9 Lejaren Hiller and Leonard Isaacson experiment with using a mainframe computer to algorithmically generate musical scores, composing the Illiac Suite for string quartet in 1957

1955 Iannis Xenakis publishes The Crisis of Serial Music, critiquing integral serialism on psychological and statistical grounds

1956 Louis and Bebe Barron create the first purely electronic film score for Forbidden Planet

 In The Netherlands, the Center for Electronic Music is established within the Philips Research Laboratory

 Stockhausen’s Gesang der Jünglinge combines concrète and elektronische

 Xenakis completes the first granular study – Analogue B

1957 In Warsaw, the Studio Experimentalne is established at Polish National Radio

 The Bell Telephone Laboratories host the first digital music experiments: Max Mathews programs the first sounds ever generated by a digital computer and creates MUSIC 1, the earliest programming environment for sound synthesis

1958 Xenakis designs the Philips Pavilion at the Brussels World’s Fair for which Varèse composes Poème électronique; Xenakis also provides Concrète PH for the interludes between shows

 In Santiago de Chile, the Laboratorio de Acústica is used for the earliest electronic music work done in South America

 Scott invents and begins development of the Electronium, an algorithmic composing machine without a musical keyboard

 In Toronto, the University of Toronto Electronic Music Studio is founded

1958–60 Stockhausen works on Kontakte

1960 Andrej Markowski creates, at the Experimental Studio in Warsaw, electronic music and sound design for The Silent Star, directed by Kurt Maetzig

 Raymond Scott composes a completely electronic soundtrack for the Vicks: Medicated Cough Drops commercial

1961 The Norsk Rikssringkasting (NRK) in Oslo allows its studios to be used for the earliest experiments in electronic music in Norway

 Kelly and Lochbaum design an algorithm to simulate the human vocal tract

 James Tenney creates the plunderphonic tape piece Collage #1 (Blue Suede), sampling and manipulating a famous Elvis track
Chronology

1962
In Buenos Aires, the Laboratorio de Música Electrónica associated to the Instituto Torcuato di Tella is founded; in Ghent, Belgium, the Institut vor Psychoakoestiek en Elektronische Muziek; in East Berlin, the Experimentalstudio für Künstliche Klang und Gerauscherzeugung, Laboratorium für Akustisch-Musikalische Grenzprobleme.

1963
Gottfried Michael Koenig’s Projekt 1 program is devised, for automatic aleatoric serial composition.

1964
Stockhausen composes Mikrophonie I for amplified and processed tam-tam.
Jean-Claude Risset visits Bell Labs for the first time and uses MUSIC IV to investigate the timbre of trumpets.

1965
Steve Reich creates his first phase piece: It’s Gonna Rain.
Alvin Lucier creates his Music for Solo Performer, the first live electronics piece to use amplified alpha brainwaves.

1967
In Gordon Mumma’s composition Hornpipe (1967) an analogue device analyses and amplifies the resonances of the hall in which a performer is playing the French horn, thus predating interactive machine-listening systems.
John Chowning discovers Frequency Modulation sound synthesis.

1968
MUSIC V becomes the first computer music programming system to be implemented in FORTRAN.
Tudor composes the first of his Rainforest pieces, featuring a multitude of objects acting as loudspeakers dangling directly from their cables.
Raymond Scott invents the first ‘drum machine’, Bandito the bongo artist.
Jean-Claude Risset creates a catalogue of computer-generated sounds at Bell Labs including guidelines to synthesise different musical instruments using MUSIC V; Risset also composes Computer Suite from Little Boy, utilising auditory illusions.
Wendy Carlos’s Switched-On Bach achieves popular success, promoting Robert Moog’s modular synthesisers.
Lee Scratch Perry sets up his Upsetter record label – the Jamaican sound system and studio scene is a fertile backdrop for the development of dub and the remix.

1969
Max Mathews builds the GROOVE synthesiser, being the first to connect a computer to an analogue synthesiser.
First performance of Lejaren Hiller and John Cage’s HPSCHD, for massed audiovisual forces.
Luc Ferrari’s music promenade manipulated field recording.

1970
Pierre Boulez founds the Institut de Recherche et Coordination Acoustique/Musique (IRCAM).

1970–2
François Bayle’s L’expérience acoustique.
xviii Chronology

1971 Richard Teitelbaum’s piece Alpha Bean Lima Brain involves the transmission of brain waves by telephone to control jumping beans.
 Walter Carlos creates the electronically instrumental score for A Clockwork Orange by Stanley Kubrick.
 Hiller and Ruiz develop the first computer simulations by physical models, of instrumental sounds.
 John Chowning describes techniques for the computer simulation of moving sound sources that are based on the Doppler effect as well as reverberation effects.
 Tonto’s Expanding Head Band release the psychedelic and progressive Zero Time, composed with the expanded Series III Moog synthesiser.

 F. Richard Moore, Gareth Loy, and others at the Computer Audio Research Laboratory (CARL) at University of California at San Diego develop and distribute an open-source, portable system for signal processing and music synthesis, called the CARL System, modelled after UNIX.
 Eduard Artemiev produces the electronic score for Solaris by Andrei Tarkovsky.
 Pong by Atari becomes a mass gaming phenomenon.

1973 The Composers inside Electronics collective is formed.

1974 Paul De Marinis builds Parrot Pleaser, an automatic music composing circuit intended to be played by a bird.
 Curtis Roads writes a program with MUSIC V implementing granular synthesis.
 François Bayle establishes the Acousmonium loudspeaker orchestra.
 DJ Kool Herc is experimenting with turntable mixing at parties in the Bronx.

1974–9 Laurie Spiegel develops the VAMPIRE (Video And Music Program for Interactive Realtime Exploration/Experimentation) system.

1975 Michel Waisvisz unleashes the Crackelbox synthesiser.
 John Appleton produces the prototype for the Synclavier.

1976 Denis Smalley writes Darkness After Time’s Colours.

 Ben Burtt coins the term ‘sound designer’ to reflect his contribution to the film Star Wars.

1978 Atari releases the Atari Video Music audio-visualiser.
 Brian Eno creates the ambient music installation Music for Airports.
 Kraftwerk create their The Man-Machine album, touring with robotic mannequins.
xix Chronology

Space Invaders by Toshihiro Nishikado is the first game to have continuous music throughout

Trevor Wishart composes Red Bird: A Political Prisoner's Dream

1979
Merzbow starts his Lowest Music and Arts record label to release his music on cassette

1980
 Fonction d’onde formantique (FOF) sound synthesis (or formant wave function synthesis), is developed at IRCAM by Xavier Rodet, Yves Potard and Jean-Baptiste Barrière

1981
The launch of Music TeleVision; MTV appropriates the existing term VJ for their presenters, starting a parallel use of this descriptor, later fully reclaimed by live club visual artists

1981–8
Boulez works on Répons

1982
David Jaffe’s Silicon Valley Breakdown utilises an extended version of Karplus-Strong synthesis

1983
The Musical Instruments Digital Interface protocol (MIDI) is established

The Yamaha DX7 is released and becomes the first widely accessible digital synthesiser

Double D and Steinski win a remix competition with the first of their influential cut and paste Lessons

Detroit Techno provides one historical strand amongst many of electronic dance music: Juan Atkins had been recording in the duo Cybotron since 1981, and influences included electronic, disco and funk artists such as Kraftwerk, Giorgio Moroder and Parliament

1984
Paul Lansky develops Cmix, later to become RTCmix, an extension for realtime use created by Brad Garton and David Topper

Yasunao Tone begins ‘wounding’ CDs through the application of perforated Scotch tape

First attempts at automatic accompaniment systems from Roger Dannenberg and Barry Vercoe presented at the International Computer Music Conference at IRCAM

The Wabot-2 score reading and keyboard playing robot is completed, the first of a series of musical robots produced at Waseda University

1985
Laurie Spiegel develops Music Mouse

Paul Lansky’s Idle Chatter

1986
Csound is originally authored by Barry Vercoe and colleagues at the MIT Media Labs

George E. Lewis begins working on the Voyager interactive music system

The Akai S900 becomes one of the first (and possibly the most accessible) commercially available sampling modules for mass consumers

1987
The Hierarchical Music Scoring Language (HMSL) is authored by Polansky, Rosenboom and Burk
xx Chronology

1988 Miller Puckette publishes his paper *The Patcher*; at IRCAM he develops this visual patching system into an interactive computer music programming environment called *Max*

1989 Public Enemy’s album *Fear of a Black Planet* demonstrates the power of their sampled hiphop production allied to strong political messages

John Oswald releases the *Plunderphonic* EP and is later forced to ‘recant’, destroying all remaining copies, by the litigious music industry

1990 *Max* (later *Max/MSP*) is released commercially, becoming available to non-academic musicians

1991 Nic Collins creates the piece *Broken Light* by hardware hacking CD players

Common Lisp Music (or *CLM*), a sound synthesis language is written by Bill Schottstaedt at Stanford University

1992 Reed Ghazala starts publishing articles on ‘Circuit Bending’ in the journal *Experimental Musical Instruments*

1993 Bjorn’s *Debut* is the first example of her many collaborations with electronic dance music producers

1994 Autechre’s *anti-EP* (particularly the third track, ‘Flutter’) is designed not to repeat in such a way as to confound recent anti-rave legislation

1995 *The Synthesis Toolkit* (*STK*), a collection of building blocks for realtime sound synthesis and physical modelling, for the C++ programming language, is authored by Perry Cook and Gary Scavone

1996 James McCartney develops *SuperCollider*, an environment and programming language for realtime audio synthesis

Miller Puckette releases *Pure Data*, a freeware program with a similar environment to *Max/MSP*

1997 Coldcut release *Let Us Play*, an extended CD including the live AV sampling demo *Timber*

Maurice Methot and Hector LaPlante start streaming algorithmic music live on the internet with *The Algorithmic Stream*

Introduction of the *Open Sound Control* (*OSC*) network music connectivity protocol

Ryoji Ikeda releases *+/*

1998 Atau Tanaka and Kaspar Toeplitz install *Global String*, uniting space with cyberspace

The gameboy *Nanoloop* sequencer is created by Oliver Wittchow

Chris Watson releases *Outside the circle of fire*

2000 Tabletop tangible musical controllers such as *SmallFish* and *Jam-O-Drum* begin to develop; they would be followed by others such as the *reactable* and the *Audiopad*

Radiohead’s *Kid A* openly assimilates electronica influences

2000–3000 Jem Finer’s *LongPlayer* installation intends to run for a thousand years

2001 Chris Chafe’s *Network Harp* uses network latency for sound synthesis
xxi Chronology

2002
 ChucK, an audio synthesis programming language, is created by Ge Wang and Perry Cook
 The *Shazam* mobile phone-based automatic music track recognition service is launched

2004
 The *Firebirds* installation by Paul de Marinis reignites the use of gas fire loudspeakers

2005
 Nintendo and Toshio Iwai release the *Electroplankton* interactive musical video game

2006
 The *Lara Croft: Tomb Raider Legend* game widely promotes adaptive audio techniques