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Canonical quantization and particle production
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1

Overview: a taste of quantum fields

Summary Quantum fields as a set of harmonic oscillators. Vacuum state. Particle
interpretation of field theory. Examples of particle production by external fields.

We begin with a few elementary observations concerning the vacuum in quantum
field theory.

1.1 Classical field

A classical field is described by a function ��x� t�, where x is a three-dimensional
coordinate in space and t is the time. At every point the function ��x� t� takes
values in some finite-dimensional “configuration space” and can be a scalar,
vector, or tensor.

The simplest example is a real scalar field ��x� t� whose strength is charac-
terized by real numbers. A free massive scalar field satisfies the Klein–Gordon
equation

�2�

�t2
−

3∑
j=1

�2�

�x2j
+m2�≡ �̈−��+m2�= 0� (1.1)

which has a unique solution ��x� t� for t > t0 provided that the initial conditions
��x� t0� and �̇ �x� t0� are specified.

Formally one can describe a free scalar field as a set of decoupled “harmonic
oscillators.” To explain why this is so it is convenient to begin by considering
a field ��x� t� not in infinite space but in a box of finite volume V , with some
boundary conditions imposed on the field �. The volume V should be large
enough to avoid artifacts induced by the finite size of the box or by physically
irrelevant boundary conditions. For example, one might choose the box as a cube
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4 Overview: a taste of quantum fields

with sides of length L and volume V = L3, and impose the periodic boundary
conditions,

��x = 0� y� z� t�= ��x = L�y� z� t�

and similarly for y and z. The Fourier decomposition is then

��x� t�= 1√
V

∑
k

�k�t�e
ik·x� (1.2)

where the sum goes over three-dimensional wavenumbers k with components

kx =
2�nx
L

� nx = 0�±1�±2� � � �

and similarly for ky and kz. The normalization factor
√
V in equation (1.2) is

chosen to simplify formulae (in principle, one could rescale the modes �k by
any constant). Substituting (1.2) into equation (1.1), we find that this equation is
replaced by an infinite set of decoupled ordinary differential equations:

�̈k+
(
k2+m2)�k = 0�

with one equation for each k� In other words, each complex function �k�t�

satisfies the harmonic oscillator equation with the frequency

	k ≡
√
k2+m2�

where k ≡ �k�. The “oscillators” with complex coordinates �k “move” not in
real three-dimensional space but in the configuration space and characterize the
strength of the field �. The total energy of the field � in the box is simply equal
to the sum of energies of all oscillators �k,

E =∑
k

[
1
2

∣∣∣�̇k

∣∣∣2+ 1
2
	2
k ��k�2

]
�

In the limit of infinite space when V →� the sum in (1.2) is replaced by the
integral over all wavenumbers k,

��x� t�=
∫ d3k

�2��3/2
eik·x�k�t�� (1.3)

1.2 Quantum field and its vacuum state

The quantization of a free scalar field is mathematically equivalent to quantizing
an infinite set of decoupled harmonic oscillators.

Harmonic oscillator A classical harmonic oscillator is described by a co-
ordinate q�t� satisfying

q̈+	2q = 0� (1.4)
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1.2 Quantum field and its vacuum state 5

The solution of this equation is unique if we specify initial conditions q �t0� and
q̇ �t0�. We may identify the “ground state” of an oscillator as the state without
motion, i.e. q�t� ≡ 0. This lowest-energy state is the solution of the classical
equation (1.4) with the initial conditions q�0�= q̇�0�= 0.

When the oscillator is quantized, the classical coordinate q and the momentum
p= q̇ (for simplicity, we assume that the oscillator has a unit mass) are replaced
by operators q̂�t� and p̂�t� satisfying the Heisenberg commutation relation


q̂�t�� p̂�t��= 
q̂�t�� ˆ̇q�t��= i�� (1.5)

The solution q̂�t� ≡ 0 does not satisfy the commutation relation. In fact, the
oscillator’s coordinate always fluctuates. The ground state with the lowest energy
is described by the normalized wave function

��q�=
[ 	

��

] 1
4
exp

(
−	q2

2�

)
�

The energy of this minimal excitation state, called the zero-point energy, is E0 =
1
2�	. The typical amplitude of fluctuations in the ground state is q ∼√

�/	 and
the measured trajectories q�t� resemble a random walk around q = 0.

Field quantization In the case of a field, each mode �k�t� is quantized as a
separate harmonic oscillator. The classical “coordinates”�k and the corresponding
conjugated momenta �k ≡ �̇∗

k are replaced by operators �̂k, �̂k. In a finite box
they satisfy the following equal-time commutation relations:[

�̂k�t�� �̂k′�t�
]
= ik�−k′�

where k�−k′ is the Kronecker symbol equal to unity when k =−k′ and zero
otherwise. In the limit of infinite volume the commutation relations become[

�̂k�t�� �̂k′�t�
]
= i

(
k+k′

)
� (1.6)

where �k+k′� is the Dirac  function. To simplify the formulae, we shall almost
always use the units in which � = c = 1.

Vacuum state The vacuum is a state corresponding to the intuitive notions
of “the absence of anything” or “an empty space.” Generally, the vacuum is
defined as the state with the lowest possible energy. In the case of a classical
field the vacuum is a state where the field is absent, that is, ��x� t� = 0. This
is a solution of the classical equations of motion. When the field is quantized
it becomes impossible to satisfy simultaneously the equations of motion for the
operator �̂ and the commutation relations by �̂ �x� t� = 0. Therefore, the field
always fluctuates and has a nonvanishing value even in a state with the minimal
possible energy.
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6 Overview: a taste of quantum fields

φ

x

0

Fig. 1.1 A field configuration ��x� that could be measured in the vacuum state.

Since all modes �k are decoupled, the ground state of the field can be char-
acterized by a wave functional which is the product of an infinite number of
wave functions, each describing the ground state of a harmonic oscillator with
the corresponding wavenumber k:

� 
��∝∏
k

exp

(
−	k ��k�2

2

)
= exp

[
−1
2

∑
k

	k ��k�2
]
� (1.7)

The ground state of the field has the minimum energy and is called the vacuum
state. Strictly speaking, equation (1.7) is valid only for a field quantized in a
box. Note that if we had normalized the Fourier components �k in equation (1.2)
differently, then there would be a volume factor in front of 	k.

The square of the wave function (1.7) gives us the probability density for
measuring a certain field configuration ��x�. This probability is independent of
time t. The field fluctuates in the vacuum state and the field configurations can
be visualized as small random deviations from zero (see Fig. 1.1).

When the volume of the box becomes very large, we have to replace sums by
integrals,

∑
k

→ V

�2��3

∫
d3k� �k →

√
�2��3

V
�k� (1.8)

and the wave functional (1.7) becomes

� 
��∝ exp
[
−1
2

∫
d3k ��k�2	k

]
� (1.9)

Exercise 1.1
The vacuum wave functional (1.9) contains the integral

I ≡
∫

d3k ��k�2
√
k2+m2� (1.10)
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1.3 The vacuum energy 7

where �k are defined in equation (1.3). This integral can be expressed directly in terms
of the function ��x�,

I =
∫

d3xd3y��x�K �x�y���y� �

Determine the required kernel K �x�y�.

1.3 The vacuum energy

Let us compute the energy of a free scalar field in the vacuum state. Each oscillator
�̂k is in its ground state and has energy 1

2	k, so that the total zero-point energy
of the field in a box of finite volume V is

E0 =
∑
k

1
2
	k�

Taking the limit V →� and replacing the sum by an integral according to (1.8),
we obtain the following expression for the vacuum energy density,

E0

V
=

∫ d3k
�2��3

1
2
	k� (1.11)

The integral diverges at the upper bound as k4. Taken at face value, this would
indicate an infinite vacuum energy density. If we impose an ultraviolet cutoff, for
example, at the Planckian scale, where one expects quantum gravity to induce new
physics, then the vacuum energy density is of order unity in the Planck units. This
corresponds to a mass density of about 1094 g/cm3. We recall that the mass of
the entire observable Universe is only ∼ 1055g! Therefore, if the vacuum energy
contributes to the gravitational field, such a huge energy density is in obvious
contradiction with observations.

The standard way to resolve this problem is to postulate that the vacuum
energy density given in (1.11) does not contribute to the gravity. Another way
to avoid this problem is to consider a supersymmetric theory where every field
has a supersymmetric partner that contributes an equal amount to the vacuum
energy with an opposite sign. However, experiments show that supersymmetry
must be broken at some energy scale that is larger than the energy currently
accessible to particle accelerators. This leads to a mismatch of the superpart-
ner contributions to the vacuum energy of order the supersymmetry breaking
scale, which is still too large when compared with observational limits. Therefore
the supersymmetric solution of the vacuum energy problem is not immediately
successful.
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8 Overview: a taste of quantum fields

1.4 Quantum vacuum fluctuations

Amplitude of fluctuations As we found above, the typical amplitude of quan-
tum fluctuations for the mode k is

�k ≡
√〈

��k�2
〉
∼ 	

−1/2
k � (1.12)

Field values cannot be measured at a point; in a realistic experiment, only their
values, averaged over a finite region of space, are measured. Let us consider the
average value of a field ��x� in a cube-shaped region of volume L3,

�L ≡ 1
L3

∫ L/2

−L/2
dx

∫ L/2

−L/2
dy

∫ L/2

−L/2
dz��x� �

Exercise 1.2
Justify the following order-of-magnitude estimate of the typical amplitude of fluctuations
�L,

�L ∼
[
��k�

2 k3
]1/2

� k= L−1�

where k≡ �k� and �k is the typical amplitude of fluctuations in the mode �k.
Hint: The “typical amplitude” x of a variable x fluctuating around 0 is x =√
x2�.
Taking into account that for vacuum fluctuations, �k is given in (1.12), we

find that the typical amplitude of �L is

�L ∼
√

k3L
	kL

� kL ≡ L−1� (1.13)

We conclude that �L diverges as L−1 for small L�m−1 and decays as L−3/2

for large Lm−1.
Observable effects of vacuum fluctuations Quantum vacuum fluctuations

have observable consequences that cannot be explained by any other known
physics. The three well-known effects are the spontaneous emission of radiation
by atoms, the Lamb shift, and the Casimir effect. All of them have been measured
experimentally.

The spontaneous emission of a photon by a hydrogen atom in vacuum occurs
as a result of the transition between the states 2p→ 1s. This effect can only be
explained if we consider the interaction of electrons with the vacuum fluctuations
of the electromagnetic field. Without these fluctuations, the hydrogen atom would
have remained forever in the 2p state.

The Lamb shift is a small difference between the energies of the 2p and 2s
states of the hydrogen atom. This shift occurs because the electron “clouds” have
different geometrical shapes for the 2p and 2s states and hence interact differently
with vacuum fluctuations of the electromagnetic field. The measured energy
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1.6 Quantum field theory in classical backgrounds 9

difference, corresponding to the frequency ≈ 1057MHz, is in a good agreement
with the theoretical prediction.

The Casimir effect is manifested as an attractive force between two parallel
uncharged conducting plates. The force decays with the distance L between the
plates as F ∼ L−4. This effect is explained by considering the shift of the energy
of zero-point fluctuations of the electromagnetic field due to the presence of the
conductors.

1.5 Particle interpretation of quantum fields

The classical concept of particles involves point-like objects moving along spe-
cific trajectories. Experiments show that this concept does not actually apply on
subatomic scales. For an adequate description of photons and electrons and other
elementary particles, one needs to use a relativistic quantum field theory (QFT)
in which the basic objects are not particles but quantum fields. For instance, the
quantum theory of photons and electrons (quantum electrodynamics) describes
the interaction of the electromagnetic field with the electron field. Quantum states
of the fields are interpreted in terms of corresponding particles. Experiments are
then described by computing probabilities for specific field configurations.

The energy levels of a “quantum oscillator �k” are En�k =
( 1
2 +n

)
	k where

n= 0�1� � � � At level n the energy En�k is greater than the ground state energy by
�E = n	k = n

√
k2+m2, which is equal to the energy of n relativistic particles

of mass m with momentum k. Therefore the excited state with energy En�k is
interpreted as describing n particles of momentum k. We refer to such states as
having the occupation number n.

A classical field corresponds to states with large occupation numbers, n 1. In
this case, quantum fluctuations can be very small compared to expectation values
of the field.

A free, noninteracting field with given occupation numbers will remain in the
corresponding state forever. On the other hand, in an interacting field occupation
numbers can change with time. An increase in the occupation number for a mode
k is interpreted as production of particles with momentum k.

1.6 Quantum field theory in classical backgrounds

“Traditional” QFT deals with problems of finding cross-sections for transitions
between different particle states, such as scattering of one particle on another. For
instance, typical problems of quantum electrodynamics are:

(i) Given the initial state (at time t → −�) of an electron with momentum k1 and a pho-
ton with momentum k2, find the cross-section for the scattering into the final state
(at t →+�) where the electron has momentum k3 and the photon has momentum k4.
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10 Overview: a taste of quantum fields

This problem is formulated in terms of quantum fields in the following manner.
Suppose that � is the field representing electrons. The initial configuration is translated
into a state of the mode �k1

with the occupation number 1 and all other modes of
the field � having zero occupation numbers. The initial configuration of “oscillators”
of the electromagnetic field is analogous – only the mode with momentum k2 is
occupied. The final configuration is similarly translated into the language of field
modes.

(ii) Initially there is an electron and a positron with momenta k1 and k2. Find the cross-
section for their annihilation with the emission of two photons with momenta k3

and k4.

These problems are solved by applying perturbation theory to a system of infinitely
many weakly interacting quantum oscillators. The required calculations are usually
rather tedious because of the vacuum polarization effects which are due to the
couplings of the excited “oscillators” with infinitely many “oscillators” in the
ground state.

In this book we study quantum fields interacting only with a strong exter-
nal field called the background. It is assumed that the background field is
adequately described by a classical theory and does not need to be quantized.
In other words, our subject is quantum fields in classical backgrounds. A
significant simplification comes from considering quantum fields that inter-
act only with classical backgrounds but not with other quantum fields. Such
quantum fields are also called free fields, even though they are coupled to the
background.

Typical problems of interest to us are:

(i) Computation of probabilities for transitions between various configurations of quan-
tum field under the influence of a classical background field, which describe the
process of particle production by the external field.

(ii) Determination of the energy level shifts for the quantum fluctuations due to the
presence of the background. Since the vacuum contribution to gravity is assumed to
have been subtracted already, it is likely that these energy shifts contribute to gravity.

(iii) Calculation of the backreaction of a quantum field on the classical background. For
example, the external gravitational field influences the vacuum fluctuations shifting
their zero-point energy levels. As a result, the vacuum fluctuations begin to contribute
to a gravitational field. Their contribution can be described by an effective energy-
momentum tensor, which is determined by the strength of the external gravitational
field.

1.7 Examples of particle creation

A quantum oscillator in an external classical field A nonstationary gravita-
tional background influences quantum fields in such a way that the frequencies
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1.7 Examples of particle creation 11

	k become time-dependent, 	k�t�. We shall examine this situation in detail in
Chapter 6. For now, we simplify our task and consider the behavior of a single
harmonic oscillator with a time-dependent frequency 	�t�. The energy of such an
oscillator is not conserved and the oscillator exhibits transitions between different
energy levels.

Let us assume that an oscillator satisfies the following equation of motion:

q̈�t�+	2
0q�t�= 0� for t < 0 and t > T� (1.14)

q̈�t�−�2
0q�t�= 0� for 0< t < T�

where 	0 and �0 are real constants.

Exercise 1.3
Given the solution of equation (1.14), q�t� = q1 sin	0t for t < 0� and assuming that
�0T  1 verify that for t > T

q�t�= q2 sin �	0t+�� �

where � is a constant and

q2 ≈
1
2
q1

√
1+ 	2

0

�2
0

exp ��0T� � (1.15)

It follows from (1.15) that the oscillator has a large amplitude, q2  q1� for t > T .
Thus the final state has much larger energy than the initial state and it can be
then interpreted as a state with many particles produced within the time interval
T > t > 0.

Exercise 1.4
Estimate the number of particles produced, assuming that the oscillator is initially in the
ground state.

The Schwinger effect A static electric field can create electron–positron
(e+e−) pairs. This effect, called the Schwinger effect, is currently on the verge
of being experimentally verified.

To understand the Schwinger effect qualitatively, we may imagine a virtual
e+e− pair in a constant electric field of strength E. If the particles move apart
from each other a distance l, they receive energy leE from the electric field. In the
case when this energy exceeds the rest mass of the two particles, leE ≥ 2me, the
pair becomes real and the particles continue to move apart. The typical separation
of the virtual pair is of order the Compton wavelength 2�/me. More precisely,
the probability of separation by a distance l turns out to be P ∼ exp �−�mel�.
Therefore the probability of creating an e+e− pair is

P ∼ exp
(
−m2

e

eE

)
� (1.16)
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