Cambridge University Press 978-0-521-86823-5 — Fundamentals of Guided-Wave Optoelectronic Devices William S. C. Chang Index More Information

Index

ABCD representation of transmission line 107 active channel waveguide components 166 acousto-optical deflector 141 acousto-optical effect 88 acousto-optical frequency shift 94, 146 acousto-optical interaction 141-144 acousto-optical RF spectrum analyzer 145 acousto-optical scanner 144 acousto-optical scanner, spectrum analyzer, frequency shifter 141 adiabatic propagation of super modes 58 adiabatic transition 58-60 analog electro-absorption modulation 179 analog Mach-Zehnder modulation 173-174 asymmetric planar waveguides 7 bandwidth of lumped EA modulators 181 bandwidth of lumped MZ modulators 174 bandwidth of traveling wave phase modulator 186 Bragg condition for acousto-optical deflection 93, 142 Bragg condition for grating reflection 48, 129 Bragg reflection at higher order 129 channel waveguides 23 characteristic impedance of transmission lines 103 chirp characteristics of MZ modulators 174 chirp characteristics of EA modulators 181 co-linear grating filter in planar waveguides 128-129 co-linear grating mode converter 129-130, 138 comparison of directional coupler and MZ modulators 183-184 comparison of electro-optic and electro-absorption modulators 181-182 comparison of Fabry-Perot and ring resonators 163-164 comparison of Frantz-Keldysh and QW electro-absorption 86 comparison of power splitters 153 contrast ratio 174, 181 coupled mode analysis 42-43 coupled mode analysis of grating reflection filter 46 detection of planar guided waves 125 diffraction, focusing and collimation of planar guided waves 127

diffraction by acoustical waves 92 diffraction of end-excited planar guided waves 119-120 diffraction of plane waves in waveguide structures 3 directional coupler 49, 149 directional coupler, coupled mode analysis 49-52 directional coupler, super mode analysis 58 directional coupler modulator and switch 182-183 directional coupler power divider 149-150 directional coupler with variable gap 161 effective index method 23-26 electric field in transmission lines 112-113 electrical properties of devices at high frequencies 102 electrical properties of devices at low frequencies 98 electrical representation at high frequencies 102-104 electrical representation at low frequencies 98 electrical transmission line analysis 107 electro-absorption effect 78 electro-absorption modulator 176 electromagnetic analysis of modes 6 electro-optic effect in plane waves 72-74 electro-optic effect in waveguides 74 electro-optic effects in GaAs and InP waveguides 76-77 electro-optic effects in LiNbO3 waveguides 74-76 electro-optic effects in polymer waveguides 76 electro-optic phase modulator 168-169 electro-optic Pockel's effect 70 electro-refraction effect 87 end excitation of planar guided waves 117-119 energy levels in quantum wells 81-82 example of effective index analysis 26 example of super mode analysis 54 excitation and detection of planar guided waves 117 excitons 79 excitons in quantum wells 82-83 fields and capacitance of electrodes 169-170 finesse, Fabry-Perot resonator 159 finesse, ring resonator 163 focusing and collimation of planar guided waves 133 - 134

formation of optical waveguides 31

CAMBRIDGE

Cambridge University Press 978-0-521-86823-5 — Fundamentals of Guided-Wave Optoelectronic Devices William S. C. Chang Index

More Information

198	Index	
	Frantz-Keldysh effect 79-81	parallel plate electrode approximation 113, 169
	free spectra range 159, 162	passband of grating filter 49
	frequency and time response 97	passive channel waveguide components 148
	frequency response of devices at low frequencies	performance of MZ modulators 1/4
	99–101	performance of phase modulators 1/0
	company all alternation of avoided markers 5.6	perturbation analysis 40, 42
	general characteristics of guided waves 5–6	perturbation analysis of two coupled waveguides 4
	Goos Hoenshen shift 122	perturbation by a hearby dielectric 45
	grating coupler for planar guided wayes 125	perturbation effect 41
	grating coupling to radiation modes 130–131	phase matching in grating reflector 47-48
	grating deflection 131–132, 136–138	phase modulator 168
	grating description 127–128	phase velocity of microwayes 103, 191
	group velocity 112, 191	phased array channel waveguide demultiplexer
	Helmholtz equation 21, 22	(PHASAR) 154 rearray children from a line course 22
	Hemmonz equation 21–22	planar guided waves from a fine source 22
	impedance matching 110	planar waveguide devices 117
	impedance matrix representation 108	plane waves in LiNbO, 72
	input impedance 105	power divider 149
	insertion efficiency 172, 183	prism coupler 121–122 123–124
	insertion enterency 172, 105	prism coupling analysis 122–123
	Kramers–Kronig relation 87	prism output coupler 125–126
		prisms in planar waveguides 133
	lens, Fresnel 134	propagation in microwave transmission line
	lens, geodesic 134	104–105, 185
	lens, Luneberg 134	propagation loss of optical waveguides 164–165
	lens in planar waveguides 23	properties of channel guided-wave modes 27–28,
	linewidth, Fabry–Perot resonator 159, 160	40-41
	linewidth, ring resonator 163	properties of TE planar guided-wave modes 11-13
	longitudinal fields 40	properties of TM planar guided-wave modes 17-1
	lumped element modulators and switches 167	pulse and frequency response 111
	<i>m</i> -lines 125	Q factor, Fabry–Perot resonator 159
	Mach–Zehnder inteferometer 63	Q factor, ring resonator 163
	Mach–Zehnder modulator analysis 170–172	Quantum Confined Stark Effect (QCSE) 84
	Mach–Zehnder modulator in III-V compound	quantum well electro-absorption 81
	semiconductor 1/3	quantum well material characterization 86
	Mach–Zehnder modulator in LiNbO ₃ $1/2-1/3$	quantum well saturation 86
	Mach Zehnder modulator 170, 172, 173	radiation loss of auruad wavaruidas 164
	Mach Zohnder gwitches 175	raflaction coefficient in transmission line 105
	made artification modulator 176	reflectors, channel wavaguides 157, 159
	multimode interference coupler 64–67	reflectors, grating 136, 157
	multimode interference power divider 153	reflectors, V-branch 157
	mutanioue mericicle power urvider 155	refraction in planar waveguides 132–133
	n = 9.25	representation and excitation of fields in waveguid
	$n_{\rm eff}$ measurement 160	28–30
	non-linear distortion, electro-absorption modulator 180	resonator optical delay lines 165
	non-linear distortion, Mach-Zehnder modulator 174	resonators 158
		resonators, Fabry-Perot 158-160
	optical delay line 165	resonators, ring 160-163
	optical waveguides in polymers 35-36	resonators, time and frequency response 166
	optical waveguides on GaAs or InP 33-35	
	optical waveguides on LiNbO ₃ 32-33	saturation of electro-absorption modulation 180-1
	optical waveguides on Si substrates 36-37	scalar approximation of waveguide equations 30
	overlap integral 29, 119, 178	scattering matrix representation 109

CAMBRIDGE

Cambridge University Press 978-0-521-86823-5 — Fundamentals of Guided-Wave Optoelectronic Devices William S. C. Chang Index

More Information

Index

199

Smith chart 105 Snell's law of refraction for planar waveguides 120 spurious free dynamic range 174, 180 Star coupler 138, 151 super mode analysis 52 super modes of coupled dissimilar waveguides 58 super modes of coupled identical waveguides 52 super modes of waveguides with variable coupling 57 super modes viewed from coupled mode analysis 56 surface acoustic wave generation 89-90 susceptibility effect in plane wave propagation 69-70 susceptibility tensor 71 tapered coupler 125 Taylor series expansion of T(V) 173, 179 TE and TM modes in planar waveguides 7 TE modes in planar waveguide 8 TE planar air modes 14-15 TE planar guided-wave modes 8-9 TE planar guided-wave modes, cut-off 11 TE planar substrate modes 13-14 TE symmetric planar guided-wave modes 9-10 TM modes of planar waveguides 15 TM planar air modes 19-20

TM planar guided-wave modes 15–17

TM planar guided-wave modes, cut-off 17

TM planar substrate modes 19

transient characterization of transmission line 111

transmission and reflection of grating filter 49 transverse electro-magnetic fields 40 traveling wave directional coupler modulator analysis 187 - 188traveling wave directional coupler modulator/switch 187 traveling wave electro-absorption modulators 188-189 traveling wave electrode design 190 traveling wave electro-optic modulators 185 traveling wave interactions 114 traveling wave Mach-Zehnder modulator/switch 186 traveling wave modulators and switches 184 traveling wave phase modulators 185-186 traveling wave representation of $\Delta \alpha_{\rm RF}$ 188 traveling wave representation of $\Delta n_{\rm eff}$ 185 V_# 172, 183

 V_{π} 172, 183 $V_{\pi, eq}$ 180

waveguide loss measurement 126–127, 160 wavelength filtering/multiplexing 153 wavelength filtering, reflection 154 wavelength filtering, resonance 157

Y-branch, asymmetric 62 Y-branch, symmetric 60–62 Y-branch power distributor 151–153 Y-branch power splitter 149 Y-branch reflector 62