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1 The formation and analysis
of optical waveguides

1.1 Introduction to optical waveguides

Optical waveguides are made from material structures that have a core region which

has a higher index of refraction than the surrounding regions. Guided electromagnetic

waves propagate in and around the core. The transverse dimensions of the core are

comparable to or smaller than the optical wavelength. Figure 1.1(a) illustrates a typical

planar waveguide. Figure 1.1(b) illustrates a typical channel waveguide. For rigorous

electromagnetic analysis of such guided-wave structures, Maxwell’s vector equations

should be used. Many of the theoretical methods used in the analysis of optical guided

waves are very similar to those used in microwave analysis. For example, modal analysis

is again a powerful mathematical tool for analyzing many devices, applications and

systems.

However, there are also important differences between optical and microwave

waveguides. In microwaves, we usually have closed waveguides inside metallic bound-

aries. Metals are considered as perfect conductors at most microwave frequencies.

Microwaves propagate within the metallic enclosure. Figure 1.2 illustrates a typical

microwave rectangular waveguide. In these closed structures, we have only a discrete

set of waveguide modes whose electric fields terminate at the metallic boundary.

Microwave radiation in the waveguide may be excited either by an electric field or by

a current loop. At optical wavelengths, we avoid the use of metallic boundaries because

of their strong absorption of radiation. Ideal optical waveguides, such as those illustrated

in Fig. 1.1(a) and (b), are considered to have dielectric boundaries extending to infinity.

They are called open waveguides. Optical guided-wave modes are waves trapped in and

around the core. They can be excited only by electric fields.

1.1.1 Differences between optical and microwave waveguides

Mathematically, modes represent propagating homogeneous1 solutions of Maxwell’s

electromagnetic equations in waveguide structures that have constant cross-section

and infinite length. Homogeneous solutions means that these are the propagating electric

and magnetic fields that satisfy the differential equations and all the boundary conditions

in the absence of any radiation source.2 There are three important differences between

optical and microwave waveguide modes and their utilization.

www.cambridge.org/9780521868235
www.cambridge.org


Cambridge University Press
978-0-521-86823-5 — Fundamentals of Guided-Wave Optoelectronic Devices
William S. C. Chang
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

(1) In open dielectric waveguides, the discrete optical modes have an evanescent

field outside the core region (the core is often called vaguely the optical waveguide).

There may be a significant amount of energy carried in the evanescent tail. The

evanescent field may be used to achieve mutual interactions with the fields of other

modes of such waveguides or structures. The evanescent field interaction is very

important in devices such as the dielectric grating filter, the distributed feedback

laser and the directional coupler.

(2) The mathematical analysis is more complex for open than for closed waveguides.

In fact, there exists no analytical solution of three-dimensional open channel wave-

guide modes (except the modes of the round step index fiber) in the closed form.

One must use either numerical analysis or approximate solutions in order to find the

field distribution of optical channel waveguide modes.
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Fig. 1.1. An optical waveguide. (a) A planar waveguide. The substrate and the film are so wide in the Y

direction thatW can be approximated by ∞. The substrate thickness is also considered to be ∞ in the

–x direction. Guided-wave modes could propagate in any direction in the YZ plane. (b) A channel

waveguide. The high index core (–t≤ x≤ 0, −W≤ y≤+W) is embedded in the substrate. The core is

very long in the z direction with nc > ns > 1. The guided wave propagates in the z direction.
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(3) In addition to the set of guided modes that have discrete eigenvalues, there is an

infinite set of continuous modes in open waveguides. Only the sum of the discrete

and continuous modes constitutes a complete set of orthogonal functions. It means

that, rigorously, any arbitrary incident field should be expanded mathematically as a

summation of this complete set of modes. At any dielectric discontinuity, the

boundary conditions of the continuity of electric and magnetic fields are satisfied

by the summation of both the guided-wave modes and the continuous modes on both

sides of the boundary. In other words, continuous modes are excited at any disconti-

nuity. Energy in the continuous modes is radiated away from the discontinuity. Thus,

continuous modes are called radiation modes.

1.1.2 Diffraction of plane waves in waveguides

The propagation and properties of optical waves in optical waveguides can also be

understood from conventional optical analysis of plane wave propagation in multilayered

media. A typical optical planar waveguide is illustrated in Fig. 1.3. It has a high index

film surrounded by cladding and a substrate; both have a lower index of refraction. The

width of the film, the cladding and the substrate, extend to y = ±∞. The thickness of the

substrate and cladding also extends to infinity in the x direction. If we analyze optical

plane waves propagating in multilayered media such as that shown in Fig. 1.3, we find

that there are three typical cases.

(1) In the first of these, a plane wave is incident obliquely on the film from either x << 0 or

x >> t. Without any loss of generality, let us assume that the plane wave is polarized in

the y direction. It propagates in the xz plane in a direction which makes an angle θj
with respect to the x axis. The angle, θj, will be different in different layers, where

j designates the layer with index nj. For example, plane waves in the film with index n1
will have a functional form, exp � jn1k sin θ1 zð Þ exp � jn1k cos θ1 xð Þ exp jω tð Þ:

X
Z

Y
X = –t 

X = +t

Y = –W Y = +W

Metallic walls

Fig. 1.2. A microwave waveguide. The rectangular waveguide has metallic walls at y = ±W and at

x = ±t. Guided waves propagate along the Z direction in the hollow region, –t < x < +t, −W < y < +W.
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There will be reflected and transmitted waves at the top and bottom boundaries of the

film. The continuity of the tangential electric field demands that n1k sin θ1 ¼

n2k sin θ2 ¼ n3k sin θ3 at the boundaries. There is a continuous range of real values

of θj that will satisfyMaxwell’s equations and the boundary conditions in all the layers.

Plane waves with real values of θj represent radiation waves for x < 0 and for x > t

because they propagate in the x direction. In the language of modal analysis, the

multiple reflected and refracted waves constitute the radiation modes with continuous

eigenvalues βxj (βxj ¼ njk cos θj) in the x direction, and βxj is real.

(2) In the second cases, the y-polarized plane waves are trapped in the high index

film by total internal reflections from the top and the bottom boundaries of the film

at x = 0 and x = t. In this case the plane waves in the film will still have the functional

variation of exp � jn1k sin θ1 zð Þ exp � jn1k cos θ1 xð Þ exp jω tð Þ with real values of

θ1. When θ1 is sufficiently large, total internal reflection occurs at the boundaries.

In total internal reflection, “n1k sinθ1” is larger than njk of the surrounding media,

and θj (for j ≠ 1) becomes imaginary in order to satisfy the boundary conditions at

all values of z. The fields in the cladding and substrate regions, x < 0 and x > t, decay

exponentially away from the boundaries. When the trapped waves in the high

index film are bounced back and forth between the two boundaries, they will cancel

each other because of the difference in phase and yield zero total field except at

specific values of θ1 at which the round trip phase shift of the reflections is a

multiple of 2π. In other words, trapped waves can only have discrete values of real

propagation constant, βx1 (βx1 = n1k cosθ1), in the film in the x direction. It means that

plane waves in the substrate and cladding (or air) only have discrete imaginary

θj values outside the film. As we shall show later, the non-zero (i.e. the homo-

geneous solutions of wave equations) waves trapped in the high index film at these

specific θ1 values constitute the various orders of guided waves. Each order of

guided wave propagates in the z direction with a phase velocity equal to ω/β1
(β1 ¼ n1k sin θ1).
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Fig. 1.3. The index profile in a planar waveguide.
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(3) Let us assume that, in the third situation, the index of the substrate n2 is higher than

the index of the cladding n3, and lower than the index of the film n1. In this case, there

are propagating plane waves in two regions of x: in the substrate and in the high index

film region. The value of θ1 is just large enough so that plane waves are totally

internally reflected at the boundary between the film and the top cladding. Only the

field in the cladding region now decays exponentially away from the film boundary.

When there are also index variations in the lateral direction (i.e. the y direction) similar

observations, like those we discussed in (2), can be made for optical planar guided waves

propagating in the lateral direction in the yz plane. Guided-wave modes in a channel

waveguide such as the one shown in Fig. 1.1(b) can be analyzed as planar guided-wave

modes totally internal reflected at the lateral boundary at y = ±W, see Section 1.2.6. There

will be evanescent fields in the y direction at y > W and y < −W.

1.1.3 General characteristics of guided waves

In summary, optical waveguides always have a higher index core, surrounded by lower

index regions, so that optical guided waves in the core can be considered as waves

trapped in the core with evanescent field in the surrounding regions. There are also

radiation waves (or cladding waves) that also propagate in the structure. The field

distribution and the propagation constant of the guided waves are controlled by the

transverse dimensions of the core and the refractive indices of the core and all the

surrounding regions. In order to understand more clearly the properties of modes in

the optical waveguide, electromagnetic analysis of modes in optical waveguides is

presented in the next section.

The most important characteristics of guided-wave modes are the exponential decay of

their evanescent tails, the distinct polarization associated with each mode, and the

excitation of continuous modes at any defect or dielectric discontinuity that causes

diffraction loss of the guided-wave mode. The evanescent tail ensures that there is only

minor perturbation of the mode pattern for structure changes several decay lengths away

from the surface of the high index layer.

Since propagation loss of the guided-wave modes is caused usually by scattering

or absorption, the attenuation rate of the guided mode will be very low as long as there

is very little absorption or scattering loss in or near the high index layer. Themost common

causes of absorption loss are the placement of a metallic electrode nearby, the absorption

of the core material, and the use of semiconductor cladding or substrate (or core and

cladding) that has absorption. In electro-absorption modulators or switches (discussed in

Section 3.2) the absorption of the waveguide is controlled by an electrical signal so that

the output optical power is modulated by the electrical signal. Besides absorption, the

propagation losses are most commonly caused by volume scattering in the layers or by

surface scattering at the dielectric interfaces. Volume scattering is introduced by defects

in the material developed during growth or processing deposition. Surface scattering is

created usually through roughness incurred in the fabrication processes such as etching

and lift-off. Scattering converts the energy in the guided-wave mode into radiation modes.
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The exponential decay rate of any guided-wave mode in the media surrounding the

core is determined only by the indices of the layers (e.g. either the cladding index at x > t

or the substrate index at x < 0, in planar waveguides) and the β value of the mode. The

βc/ω value is called the effective index, neff, of the mode. The velocity of light in free

space c divided by the effective index is the phase velocity of the guided-wave mode in

the z direction. For the same polarization, lower order modes will have a larger effective

index (i.e. larger β) and faster exponential decay outside the core. For the same defects

or interface roughness, modes that have a smaller effective index will be scattered

more strongly into radiation modes. Therefore, higher order modes usually have larger

attenuation. Any mode that has an effective index very close to the refractive index of the

substrate or cladding will have large scattering loss. It is called a weakly propagating

mode.

On the other hand, the evanescent tail also enables us to affect the propagation of

the guided-wave mode by placing perturbations adjacent to the core of the high index

layer. For example, in the next chapter, we will discuss the directional coupler formed

by two waveguides placed adjacent to each other or by a grating filter fabricated on top

of a waveguide.

1.2 Electromagnetic analysis of modes in optical waveguides

In order to understand clearly the electromagnetic properties of guided waves, modal

analysis of an optical waveguide is presented in this section. The rigorous mathematical

analysis of simple planar waveguides such as those shown in Fig. 1.1(a) will be presented

first. In principle, modes of planar waveguides (or a summation of planar guided-wave

modes) may propagate in any direction in the plane of the waveguide (i.e. the yz plane).

However, for simplicity and without any loss of generality, the mathematical solution of

the modes of the planar waveguide will be presented first just for modes propagating in

the z direction. How these modes of planar waveguide (or combination of modes)

propagate in any arbitrary direction in the yz plane will be discussed in terms of these

z-propagating modes.

The geometry of channel waveguides is usually too complex for us to find mathema-

tically the solutions of the Maxwell’s equations in closed form. Numerical simulation

programs such as Rsoft BeamProp© are used. The exception is the solution of the circular

symmetric modes in step-index round fibers. The modes of optical fibers have been

discussed in many books [1]. They will not be repeated here. We will discuss in

Section 1.2.6 an approximate analysis, called the effective index analysis, of the modes

of open rectangular channel waveguides such as those shown in Fig. 1.1(b). Results

obtained from the effective index analysis are accurate only for well-guided modes,

i.e. modes with a short evanescent tail. Nevertheless, the effective index analysis enables

us to understand the basic properties of all channel guided-wave modes.

It will be clear later from the discussions of planar and channel waveguide modes that

the fields of most guided-wave modes can be approximated just by the dominant

component of the mode perpendicular to the direction of propagation. In other words,
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instead of solving Maxwell’s vector equations, modes of arbitrary cross-section of the

core may be calculated approximately by a scalar equation in terms of just the dominant

field. Such a quasi-scalar approximation of the Maxwell’s equations will be presented

after the discussion of planar and channel waveguide modes.

1.2.1 The asymmetric planar waveguide

A typical uniform dielectric thin film planar waveguide has been shown in Fig. 1.3,

where the film, the cladding and the substrate are all uniform and infinitely wide in the y

and the z directions. The film typically has a thickness of the order of a wavelength or

less, supported by a substrate and a cladding many wavelengths (or infinitely) thick. The

refractive index of the film (i.e. the waveguide core), n1, is higher than the indices of the

surrounding layers.

Since the structure is identical in any direction in the yz plane, we will temporarily

choose the +z axis as the direction of propagation in our mathematical analysis. For

planar modes, we further assume ∂/∂y ≡ 0. This assumption is similar to the assumption

made for plane waves in a homogeneous medium in many textbooks. This assumption on

the y variation applies in Sections 1.2.2, 1.2.3 and 1.2.4.

1.2.2 TE and TM modes in planar waveguides

The variation of the refractive index in the transverse direction is independent of z in

Fig. 1.3. From discussions of electromagnetic theory in classical electrical engineering

textbooks, we know that modes for structures that have constant transverse cross-section

in the direction of propagation can be divided into TE (transverse electric) and TM

(transverse magnetic) types. Note that TE means that there is no electric field component

in the direction of propagation, TM means that there is no magnetic field component in

the direction of propagation.

For planar waveguides, if we substitute ∂/∂y = 0 into ∇×E and ∇×H in Maxwell’s

equations, we obtain two separate groups of equations:

∂Ey

∂ z
¼ μ ∂Hx=∂ t;

∂Ey

∂ x
¼ �μ∂Hz=∂ t;

∂Hz

∂ x
�

∂Hx

∂ z
¼ �ε∂Ey=∂ t;

and

∂Hy

∂ z
¼ �ε∂Ex=∂ t;

∂Hy

∂ x
¼ ε∂Ez=∂ t;

∂Ez

∂ x
�

∂Ex

∂ z
¼ μ∂Hy=∂ t:

(1:1)

Clearly, Ey, Hx, and Hz are related only to each other, and Hy, Ex, and Ez are related

only to each other. Since the direction of propagation is z, the solutions of the first

group of equations are the TE modes. The solutions of the second group of equations are

the TM modes. In other words, all planar waveguide modes can be divided into TE and

TM types.

Since ε is only a function of x, the z variation of the fields must be the same in all

layers. This is a consequence of the requirement for continuity of Ey or Hy for all z. Let
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us also assume that the time variation of the field is ejωt. Then, for propagating waves in

the +z direction, we will have an exp(–jβz) variation, while the waves in the –z direction

will have an exp(jβz) variation. The TE wave equations for planar Ey in Eq. (1.1) can now

be written as a product of a function in y and a function in z, i.e. Ey x; zð Þ ¼ Ey xð ÞEy zð Þ

∂
2

∂ x2
þ ω2με xð Þ � β2
� �

� �

Ey xð ÞEy zð Þ ¼ 0; (1:2a)

∂
2

∂z2
þ β2

� �

Ey zð Þ ¼ 0; (1:2b)

or

∂
2

∂x2
þ ω2με xð Þ � β2
� �

� �

Ey xð Þ ¼ 0: (1:2c)

Similar equations exist for TM modes.

1.2.3 TE modes of planar waveguides

The planar TE modes (i.e. modes with ∂/∂y = 0) in the planar waveguides are eigen

solutions of the equation,

∂
2

∂ x2
þ

∂
2

∂ z2
þ ω2με xð Þ

� �

Ey x; zð Þ ¼ 0

ε xð Þ ¼ n23εo x � t

¼ n21εo t4x40

¼ n22εo 0 � x

Hx ¼ �
j

ωμ

∂Ey

∂ z
; Hz ¼

j

ωμ

∂Ey

∂ x
: (1:3)

Here, εo is the free space electric permittivity. All layers have the same magnetic

permeability μ, and the time variation is exp(jωt). Note that when Ey is known, Hx and

Hy can be calculated directly from Ey. The boundary conditions are the continuity of the

tangential electric andmagnetic fields at x = 0 and at x = t. As we shall see in the following

subsections, the TE modes can be further classified into three sub-groups. One group, the

guided waves, is characterized as plane waves trapped inside the film, and the other two

groups are two different kinds of combination of radiating plane waves known as

substrate modes and air modes. Mathematically, all the TE modes form a complete set

of eigenfunctions, meaning that any arbitrary electric field polarized in the y direction

with ∂/∂y= 0 can be expanded as a summation of TE modes.

1.2.3.1 TE planar guided-wave modes

Mathematically, Eq. (1.2) and (1.3) suggest that the solution of Ey(x) is either a sinusoidal

or an exponential function, and the solution of Ey(z) is e
�jβz. Guided by the discussion in
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Section 1.1, we look for solutions of Ey(x) with sinusoidal variations for t > x > 0 and with

decaying exponential variations for x > t and x < 0. Since we have chosen the time

variation as e+jωt, the exp(−jβz) variation of Ey(z) represents a forward propagating wave

in the +z direction. In short, we will assume the following functional form for Ey(x,z):

Em x; zð Þ ¼ Am sin hmtþ �mð Þ exp �pm x� tð Þ½ � exp �jβmzð Þ x � t

Em x; zð Þ ¼ Am sin hmxþ �mð Þ exp �jβmzð Þ t4x40

Em x; zð Þ ¼ Am sin�m exp qmx½ � exp �jβmzð Þ; 0 � x

where in order to satisfy Eq. (1.2a, b and c)

βm=kð Þ2 � pm=kð Þ2 ¼ n23

βm=kð Þ2 þ hm=kð Þ2 ¼ n21

βm=kð Þ2 � qm=kð Þ2 ¼ n22: (1:4)

The subscript m stands for the mth order solution of Eq. (1.3). Equation (1.3) is clearly

satisfied by Em in all the individual regions. We have also chosen this functional form so

that the continuity of Ey is automatically satisfied at x = 0 and x = t. In order to satisfy the

magnetic boundary conditions3 at x = 0 and x = t, hm, qm, and pmmust be themth set of the

roots of the transcendental equations which are also called the characteristic equations,

tan hm=kð Þkt þ �m½ � ¼ �hm=pm and tan�m ¼ hm=qm: (1:5)

For a given normalized thickness kt, there are only a finite number of roots of the

characteristic equations yielding a discrete set of real values for h, p, and q. For this

reason, the guided-wave modes are also called the discrete modes. They are labeled by

the integer subscript m (m = 0, 1, 2,…). The lowest order mode with m = 0 has the largest

β value, β0 > β1 > β2 > β3… and h0 < h1 < h2…. Moreover, one can show that the number

of times in which sin (hmx + �m) is zero is m. The Hx and Hz fields can be calculated

from Ey according to Eq. (1.1). Since βm >> hm, Hx is the dominant magnetic field for

TE modes. The mth TE mode propagating in the –z direction will have ejβz variation for

Ey(z), with the same xy field variation given in Eq. (1.4).

The exponential decay rate of any guided-wave mode is determined only by the index

of the surrounding layer (either at x > t or at x < 0) and the β/k value of the mode. The β/k

value is called the effective index, neff, of the mode. The velocity of light in free space

divided by effective index neff is the phase velocity of the guided-wave mode. For the

same polarization, lower order modes will have larger effective index and faster expo-

nential decay. For the same Δε of defects or interface roughness, modes that have a

smaller effective index will be scattered more strongly into radiation modes, i.e. substrate

and air modes. Therefore, higher order modes usually have larger attenuation.

1.2.3.2 TE planar guided-wave mode in a symmetrical waveguide

In order to visualize why there should be only a finite number of modes, let us consider

the example of a symmetrical waveguide. In that case, n2 = n3 = n and pm = qm. The

quadratic equations for hm and βm and the transcendental equation now become

The formation and analysis of optical waveguides 9
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hm

k

� �2

þ
pm

k

� 	2

¼ n21 � n2; (1:6)

and

tan
hm

k

� �

kt

� �

¼
�2 hm

pm

1� hm2

pm2

: (1:7)

Since,

tan 2
hm

k

� �

kt

2

� �

¼
2 tan hm

k

� �

kt
2


 �

1� tan2 hm
k

� �

kt
2


 � ;

Eq. (1.7) can be reduced to two equations,

tan
hm

k

� �

kt

2

� �

¼
pm=k

hm=k
; hence

hm

k
tan

hm

k

� �

kt

2

� �

¼
pm

k
; (1:8a)

or

tan
hm

k

� �

kt

2

� �

¼ �
hm=k

pm=k
; hence �

hm

k
cot

hm

k

� �

kt

2

� �

¼
pm

k
: (1:8b)

In the coordinate system of pm/k and hm/k, the solutions of Eq. (1.6) and (1.7) are given

by the intersections of the two curves representing the quadratic equation, hm=kð Þ2þ

pm=kð Þ2¼ n21 � n2; and one of the two equivalent tangent equations, (1.8a) or (1.8b).

To summarize, there are two sets of equations. The solutions for the first tangent equation

(1.8a) and the quadratic equation (1.6) are known as the even modes because they lead to

field distributions close to a cosine variation in the film. They are symmetric with respect

to x = t/2. The solutions from the second tangent equation (1.8b) and the quadratic

equation (1.6) are called the odd modes because the fields in the film have distributions

close to sine variations. They are anti-symmetric with respect to x = t/2.

Let us examine the even modes in detail. If we plot the quadratic equation of hm/k and

pm/k, it is a circle with a radius (n1
2
− n2)1/2. The curve describing the first tangent equation

will be obtained from those values of hm/k and pm/k whenever the left hand side (LHS) is

equal to the right hand side (RHS) of the tangent equation. The RHS is just pm/k. The LHS

has a tangent which is a multi-valued function. It starts from 0 whenever (hm/k)kt/2 is 0, π,

ormπ. It approaches + or − infinity when (hm/k)kt/2 approaches +π/2 or −π/2, or (m+π/2) or

(m–π/2) where m is an integer. The curves representing these two equations are illustrated

in Fig. 1.4. Clearly there is always a solution as long as n1 > n, i.e. there is an intersection of

the two curves, nomatter how large (or how small) is the circle (i.e. the n1 value). This is the

fundamental mode, labeled by m =0. However, whether there will be an m ≥ 1 solution

depends on whether the radius is larger than 2π/kt. There will be m = j solutions when

the radius is larger than 2jπ/kt. Notice that h0 < h1 < h2… and β0 > β1 > β2 >…. When the

radius of the circle is just equal to 2jπ/kt, the value for p/k is 0. This is the cut-off point

for the jth (j > 1) mode.

10 Fundamentals of Guided-Wave Optoelectronic Devices

www.cambridge.org/9780521868235
www.cambridge.org

