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Mixing: physical issues

This chapter provides a brief review of physical considerations in the

analysis of mixing problems and several examples of problems that can

be framed in terms of the mathematical structure covered in this book.

Mixing is a common phenomenon in everyday life. A blob of white cream

placed in a cup of black coffee and gently stirred with a spoon forms, if one looks

carefully, intricately shaped striated structures, until the mixture of coffee and

cream homogenizes into a fluid that is uniformly brown in colour. This common

phenomenon serves to illustrate some of the key features of mixing; namely,

the interplay between advection and diffusion. If the coffee is at rest when the

cream is added (and assuming that the insertion of the cream into the coffee only

causes negligible disturbance of the surrounding coffee) then, in the absence

of stirring, the cream mixes with the coffee by the mechanism of molecular

diffusion. Experience tells us that in this particular situation the mixing takes

much longer than we would typically be willing to wait. Therefore we stir the

admixture of coffee and cream with a spoon, and observe it to homogenize very

quickly. This stirring illustrates the role that advection plays in homogenizing

the cream and coffee. In fact, in this particular example (as well as many others)

the role of molecular diffusion in achieving the desired final mixed state may

very well be negligible.

In this monograph we will concentrate exclusively on mixing via convective

motions or advection. This is the foundation upon which the entire subject of

mixing is built. Of course, the impact or lack thereof of molecular diffusion on

mixing is a fact that requires justification, and this justification occurs within

the physical context of specific mixing problems. The spectrum of problems

occurring in nature and technology where mixing is important is enormously

wide (see Figure 1.1). For example, in the subject of mantle convection (Kellogg

(1993)) it probably seems reasonable that diffusion has essentially no impact on

the mixing of ‘rock with rock’. At the other end of the spectrum, in the realm of

the very small, mixing in microfluidic devices is another area in which diffusion

may have a negligible effect. In this setting the goals are to mix quickly and in
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2 1 Mixing: physical issues
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Figure 1.1 Spectrum of mixing problems. [Adapted from Ottino (1990).]

small spaces, and achieving these goals tends to make the effects of diffusion

negligible and to prohibit the creation of turbulent flows, which are well known

to enhance mixing. In fact the subject of mixing at the microscale is tailor made

for the mathematical approach of ‘chaotic mixing’ and the dynamical systems

approach, about which now there is a very large literature (see, for example

Ottino (1989a, 1990), Wiggins (1992), Wiggins & Ottino (2004)).

The dynamical systems approach to mixing, in the absence of diffusion, is

the central theme of this book. But more precisely, we develop the notion of the

linked twist map (LTM) as a paradigm for chaotic mixing in that it embodies the

kinematic mechanism of ‘streamline crossing’ as a mechanism for generating

chaotic fluid particle trajectories. But most importantly, the LTM framework

provides a way in which mixing can be optimized in the sense that one can give

conditions under which mathematically rigorous characterizations of strong

mixing occur on regions of nonzero area. Of course, the conditions leading to

strong mixing in regions of nonzero area do not guarantee fast mixing, some-

thing one wishes to produce in practice. However, not satisfying the conditions

guarantees that mixing will not be widespread, an outcome which is clearly

undesirable. Thus, in a strict sense, the conditions described in this book are

necessary conditions for effective mixing.
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1.1 Length and time scales 3

Before developing this approach in some detail, and describing how LTMs

naturally arise in the context of a variety of mixing problems, we first consider

some general physical and kinematic considerations of mixing in general that

will provide rough, but essential, guides to understanding the issues relating to

‘good’ and ‘bad’ mixing.

1.1 Length and time scales

In any ‘mixing problem’ a consideration of length and time scales is fun-

damental as they provide an indication of the main mechanisms at work.

Dimensional quantities, such as length and time scales, often combine with

certain material parameters (e.g., molecular diffusivity, viscosity, etc.) to form

dimensionless ratios that provide rough guides to the relative importance of

competing mechanisms. The Reynolds number, Re, is the ratio of inertial forces

to viscous forces. If U and L denote characteristic velocity and length scales,

Re is UL/¿, where ¿ is the kinematical viscosity, which is the ratio of viscosity,

µ, and density, Ã, i.e, ¿ = µ/Ã. Small values of Re correspond to viscous

dominated (or laminar) flows, and large values of the Reynolds number corres-

pond to turbulent flows (see examples in Figure 1.1). The Péclet number, Pe, is

the ratio of transport by advection (or convection) and by molecular diffusion;

Pe is defined as Pe = UL/D, where D is the molecular diffusion coefficient.

Pe can be interpreted also as the ratio of diffusional to advective time-scales;

the time scale for diffusion is L2/D and the time scale for convection is L/U.

A large value of Pe indicates that advection dominates diffusion, and a small

Pe indicates that diffusion dominates advection, or, in terms of time-scales,

the fastest process dominates. The ratio Re/Pe is ¿/D, the ratio between two

transport coefficients, the so-called Schmidt number, Sc = ¿/D. Sc can be inter-

preted as the ratio of two speeds. The speed of propagation of concentration

is ·D > (Dt)1/2, the speed at which concentration gets smoothed out, whereas

the propagation of momentum is ·V > (¿t)1/2, the speed that it takes for

motion to spread out or die. The ratio of these two speeds, (d·V /dt)/(d·D/dt)

is Sc1/2; thus if Sc � 1, as in the case of liquids, concentration fluctuations

survive without being erased by mechanical mixing until late in the process.

We will encounter these and other numbers in the following examples. As a

reference point the kinematic viscosity of water is about 0.01 cm2/s and of

air 0.15 cm2/s; somewhat surprisingly momentum spreads more quickly in air

than in water. The value of ¿ in liquids is highly dependent on temperature. The

diffusion coefficient of small molecules in water is about 1025 cm2/s; thus a
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4 1 Mixing: physical issues

typical value of Sc for a liquid such as water is about 103. For gases Sc is of

order one.

Example: mixing in a coffee cup

Consider again the case of mixing of milk in a coffee cup. Assume that the cup’s

characteristic length is L > 4 cm and that the typical speed is U > 5 cm/s.

Then the Reynolds number is approximately 2,000, indicating that advection

is much more important than viscous effects; a few strategic turns of the spoon

get the job done. Even if the spoon is held in place the wake behind the spoon

mixes the fluid (the wake flow behind a stationary object being a well-studied

problem). Mixing of milk in golden syrup is another matter. The kinematical

viscosity of golden syrup at 15çC is 1200 cm2/s, so Re > 1022. In this case

viscous effects dominate and one cannot rely on inertia; the spoon is removed

and the motion stops. An estimate of the time it takes for the motion to die

off is L2/¿. In the case of syrup the motion stops in a hundredth of a second

whereas in the case of milk the estimate is half an hour. Advection dominates

molecular diffusion in both problems, Pe > 106 in the case of milk and syrup.

The time necessary for mixing relying solely on molecular diffusion is L2/D.

The estimate in this case is in the order of more than a day for either problem.

Example: flow in a small channel

Consider the flow of two adjacent streams of fluid in a channel of length L

along the z-direction having a cross-sectional area in the plane xy with a char-

acteristic length h describing the width of the channel in the cross-section. The

velocity in the z-direction is denoted vz(x, y) with a mean value U. In micro-

fluidic applications typical numbers are h > 200 µm, and µ/Ã > 1022 cm2/s.

Take U as 1 cm/s. The Reynolds number in this case is Re = Uh/¿ > 2. This

small value of the Reynolds number implies that flows in microfluidic chan-

nels are typically viscous dominated. The no-slip boundary condition on the

walls of the channel leads to velocity profiles having parabolic shapes (i.e. at

a given cross-section, vz(x, y) is zero on the walls, and increases monotonic-

ally to a maximum near the middle of the channel). Consider now the Péclet

number. A typical molecular diffusion coefficient ranges between 1025 cm2/s

at the high end (corresponding to a small molecule) and 1027 cm2/s at the

low end (typical of large molecules; e.g. haemoglobin in water corresponds to

1027 cm2/s). Thus, the typical values of advective to diffusional time scales

range between 103 and 105 indicating that advection is much faster than molecu-

lar diffusion. Thus, in spite of the small dimensions, molecular diffusion may
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1.1 Length and time scales 5

not be counted on to homogenize the system to molecular scales in a reasonable

amount of time. This can be seen also by calculating time required for diffu-

sion, tD (i.e., neglecting advection) to move a particle the width of the channel,

tD > h2/D. This is 40 seconds for D > 1025 cm2/s, to about one hour for

D > 1027 cm2/s.

Example: more on channel flow

Suppose that the two entering fluid streams flowing side by side in the channel

are miscible. Then molecular diffusion provides a mechanism for the streams to

penetrate into each other. The distance of penetration of one stream into another

due to diffusion, ·D, at time t, is ·D > (Dt)1/2. Both fluids occupy the entire

width of the channel after they have flowed a distance UtD down the channel.

This distance ranges from 40 cm to 4000 cm depending on the value of D. These

distances may be prohibitively long for typical microfluidic applications.

These estimates lead to three related observations important in channel flows:

" First, let us revisit the notion of ‘penetration distance’ discussed above from

an alternate point of view. As we have seen, to reach ·x = h solely relying

on molecular diffusion takes a time > h2/D. So if the streams move with

speed U this process will have occurred after the streams have flowed a

distance L > U(h2/D) along the channel (i.e., in the z direction). From the

definition of Péclet number given above, this gives L/h > Pe. Given the

typical (large) values of Pe, this may be unacceptably high for microfluidic

applications.

" The second observation is that as diffusion takes place in the cross-section

of the channel (the plane x–y), particles experience a range of velocities

(recall that the flow is parabolic), resulting in concentration dispersion in

the z-direction and in a dispersion coefficient (Taylor dispersion) that scales

as 1/D. This means that fluid that disperses slowly in the cross-section will

disperse rapidly in the z-direction, and vice versa.

" The third and final observation is also a consequence of the parabolic

nature of the velocity field. The residence time distribution is a standard

diagnostic for quantifying mixing in channel flows. Roughly, it is a

probability density function consisting of the number of particles that reach

the end of the channel in a given time. Near the wall the velocity field is

linear with distance, vz > Û³ d, and thus a particle a distance d away from the

wall takes a time L/( Û³ d) to reach L (hence Û³ is the shear rate at the wall).

Therefore particles near the wall (as d ³ 0) take a long time to reach the

end of the channel. This would result in ‘long tails’ in the residence time
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6 1 Mixing: physical issues

distribution (RTD) for particles in the channel. Moreover the fluid near the

wall never co-mingles with fluid elements in the centre of the channel. The

result is that mixing is poor.

Putting all this together, it is then clear that the key to effective mixing in

a channel lies in the ability to mix material in the cross-section – to create a

large amount of contact interface between the two fluids. Material ‘sticking’

to walls is bad for mixing. Two advantages come with enhanced mixing in

the cross-section. The first is that if particles explore all of the cross-section

(i.e., x–y space) in a random manner they will experience all velocities (slow

near the walls, fast near the centreline) and on the whole the broadening of

the RTD is reduced. The second advantage has to do with transfer processes

between the surface of the device and the bulk of the fluid. If mixing is effective

diffusional processes are greatly accelerated; material that is near the wall goes

into the bulk and vice versa, thereby eliminating a slowdown due to diminishing

concentration gradients.

1.2 Stretching and folding, chaotic mixing

In the previous section there was essentially no explicit discussion of geometric

aspects of the mixing of two fluids. Geometrical considerations are motivated

by the fact that the objective of mixing is to produce the maximum amount of

interfacial area between two initially segregated fluids in the minimum amount

of time or using the least amount of energy. Creation of interfacial area is

connected to stretching of lines in 2D and surface in 3D. A fluid element of

length ·(0) at time zero has length ·(t) at time t; the length stretch is defined

as » = ·(t)/·(0); if mixing is effective » increases nearly everywhere, though

there can be regions of compression where» < 1. In simple shear flow the fastest

rate of stretching, d»/dt, corresponds to when the element passes though the

45ç orientation corresponding to the maximum direction of stretching in shear

flow; for long times the stretching is linear in time, » > t, as the element

becomes aligned with the streamlines. In an elongational flow (e.g., a flow

where the velocity field depends linearly on the spatial variables and contains a

saddle type stagnation point) the rate of stretching is exponential, » > et . The

distance between striations is inversely proportional to the surface area and the

thinner the striations the faster the diffusion. Note that the effects of stretching

on accelerating diffusion enter in two different ways: more interfacial area

means more area for transfer; at the same time diminishing striation thicknesses

increases the concentration gradients and increases the mass flux.
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1.2 Stretching and folding, chaotic mixing 7

In order to conceptualize the growth of interfacial area (or perimeter in the

case of two dimensions), we can imagine small elements, area or line. If mix-

ing is effective, the small elements grow in area or length (ideally, this happens

everywhere in the flow; in practice some elements may get compressed). As

we shall see, the striation thickness, and stretching, are related in a deep way

to dynamical systems concepts – entropy, finite size Lyapunov exponents,

Smale horsehoe maps (discussed in Chapter 4), and the Baker’s transformation

(discussed in Chapter 3).

The key to effective mixing lies in producing stretching and folding; stretch-

ing and folding may be roughly equated with chaos as we will see in later

chapters. The simplest case corresponds to two dimensions. If the velocity field

is steady, the mixing is poor, stretching for long times is linear, as in the case of

a simple shear flow; i.e., the stretching rate of line elements or decays as 1/t (we

are restricting ourselves to bounded flows; that is, we are excluding unbounded

elongational flows). It is, however, relatively straightforward to produce flow

fields that can generate stretching and folding and hence chaos.

Experience over the past twenty years shows that a sufficient (heuristic)

condition for chaos is the ‘crossing’ of streamlines. That is, two successive

streamline portraits, say at t and t+�t for time periodic two-dimensional flows,

or at z and z+�z for spatially periodic flows, when superimposed, should show

intersecting streamlines when projected onto the x–y plane. In two-dimensional

systems this can be achieved by time modulation of the flow field, for example

by motions of boundaries or time periodic changes in geometry. In this mono-

graph we show that this criterion is encapsulated by linked twist maps (LTMs).

Figure 1.2 from Ottino & Wiggins (2004) shows a schematic representation of

a channel type micromixer constructed from the concatenation of basic mix-

ing elements. In this illustration we consider the minimal number of different

mixing elements, two. Cross-sectional streamline patterns at the end of each

mixing element are shown. The details of the shape and internal structure of

the channel are purposefully not shown. The point here is that they can be any-

thing that produces the desired cross-sectional flow. We illustrate the mixing

properties by placing red and blue ‘blobs’ at the beginning of the mixer and

observing how they mix as they travel down the length of the mixer. This mixer

can be analyzed with the LTM formalism, which provides sufficient conditions

for (mathematically) optimal mixing. It is significant to note that a (seemingly)

slight change in the streamline patterns can lead to a dramatic change in the

mixing properties.

Numerous experimental studies have revealed the structure of chaotic flows.

The most studied cases correspond to time-periodic flows. Dye structures of

passive tracers placed in time-periodic chaotic flows evolve in an iterative
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8 1 Mixing: physical issues

n = 0 n = 5 n = 10
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(C)

Figure 1.2 (A) Schematic representation of a channel type micromixer constructed

from the concatenation of basic mixing elements. (B) The LTM mechanism causes

the flow to mix completely after passing through five periodic elements of the

mixer (where each consists of two of the basic mixing elements). (C) The LTM

conditions are not satisfied and the flow exhibits islands, which result in poor, and

incomplete mixing. [Figure taken from Ottino & Wiggins (2004).]

fashion; an entire structure is mapped into a new structure with persistent large-

scale features, but finer and finer scale features are revealed at each period of the

flow. After a few periods, strategically placed blobs of passive tracer reveal pat-

terns that serve as templates for subsequent stretching and folding. Repeated

action by the flow generates a lamellar structure consisting of stretched and

folded striations, with thicknesses s(t), characterized by a probability density

function, f (s, t), whose mean, on the average, decreases with time. The stri-

ated pattern quickly develops into a time-evolving complex morphology of

poorly mixed regions of fluid (islands) and of well-mixed or chaotic regions.

Islands translate, stretch, and contract periodically and undergo a net rotation,

preserving their identity returning to their original locations. Stretching within

islands, on average, grows linearly and much slower than in chaotic regions, in
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1.2 Stretching and folding, chaotic mixing 9

(a) (b) (c)

(d) (e) (f)

Figure 1.3 Panels (a)–(c) correspond to Poincaré sections of the cavity flow with

three different protocols for the motion of the top and bottom boundaries. Immedi-

ately below each Poincaré section is a dye advection pattern for the same protocol.

[Figure taken from Jana et al. (1994b).]

which the stretching increases exponentially with time. Moreover, since islands

do not exchange matter with the rest of the fluid (in the absence of diffusion) they

represent an obstacle to efficient mixing. Figure 1.3 from Jana et al. (1994b)

shows Poincaré sections and dye advection patterns in a cavity. The flow is

driven by moving the top and bottom boundaries according to a defined pro-

tocol. Three different protocols are shown, and each results in a different mixing

pattern. By comparing the Poincaré sections to the dye advection patterns one

easily sees that islands lead to poor mixing and chaos corresponds to ‘good’

mixing.

Now we consider a few aspects of mixing in a channel-like device: a duct

flow. Duct flows are a basic configuration for many mixing devices. However,

like steady two-dimensional flows, they are poor mixers. More precisely, duct
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10 1 Mixing: physical issues

flows are defined by the following velocity field

vx =
"Ë

"y
, vy = 2

"Ë

"x
, vz = f (x, y).

That is, a duct flow is a two-dimensional cross-sectional flow augmented by a

unidirectional axial flow. Note that in a duct flow, the cross-sectional and axial

flows are independent of both time and distance along the duct axis.

Duct flows can be converted into efficient mixing flows (i.e., flows with an

exponential stretch of material lines with time) by time-modulation or by spatial

changes along the duct axis. One example of the spatially periodic class, is the

classical partitioned pipe mixer (PPM). This flow consists of a pipe partitioned

with a sequence of n orthogonally placed rectangular plates. The cross-sectional

motion is induced through rotation of the pipe with respect to the assembly of

plates whereas the axial flow is caused by a pressure gradient. There is one

control parameter in the system: ratio of cross-sectional twist to mean axial

flow, ³ (Khakhar et al. (1987), Kusch & Ottino (1992)). The flow is regular

for no cross-sectional twist (³ = 0), and becomes chaotic with increasing

values of ³. In Figure 1.4 we show Poincaré sections from Khakhar et al.

(1987) for different values of ³. The Poincaré sections are obtained by mapping

particles under the flow from the cross-section of the flow at the beginning of one

mixing element to the beginning of the next (see also Section 2.6). Notice how

dramatically the distribution and sizes of islands and chaotic regions can change

with ³.

To give a few typical numbers, consider a striation thickness reduction, or

equivalently length stretch, where the initial length scales s(0) > h is reduced

to a size s(tF) in an amount of time tF . According to the typical numbers given

earlier we take the typical shear rates in our device to be Û³ = U/(h/2) >

102 s21. Consider a typical striation thickness reduction s(0)/s(tF) or length

stretch » > 104; that is a reduction from 102
µm to 1022

µm or 10 nm. At

10 nm molecular diffusion is fast at these scales, 1027 s for D = 1025 cm2/s,

to 1025 s for D = 1027 cm2/s.

How long does it take to accomplish this striation thickness reduction? In

simple shear, we have that s(0)/s(tF) > Û³ tF ; therefore the time needed to

accomplish this reduction is 104/102 s21 = 102 s. An elongational flow on

the other hand can accomplish the same reduction with a much lower value

of elongational rate as compared with Û³ ; in this case s(0)/s(tF) = e³tF . Thus

³ = ln(104)/100 s > 4 × 1022 s21. Elongational flows are not practical;

however a succession of simple shear flows with a periodic reorientation of the

line elements accomplishes the same objective.
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