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1 Introduction

System identification, as a particular process of statistical inference, exploits two types

of information. The first is experiment; the other, called a priori, is known before making

any measurements. In a wide sense, the a priori information concerns the system itself

and signals entering the system. Elements of the information are, for example:

� the nature of the signals, which may be random or nonrandom, white or correlated,

stationary or not, their distributions can be known in full or partially (up to some

parameters) or completely unknown,
� general information about the system, which can be, for example, continuous or

discrete in the time domain, stationary or not,
� the structure of the system, which can be of the Hammerstein or Wiener type, or other,
� the knowledge about subsystems, that is, about nonlinear characteristics and linear

dynamics.

In other words, the a priori information is related to the theory of the phenomena

taking place in the system (a real physical process) or can be interpreted as a hypothesis

(if so, results of the identification should be necessarily validated) or can be abstract in

nature.

This book deals with systems consisting of nonlinear memoryless and linear dynamic

subsystems, for example, Hammerstein and Wiener systems and other related struc-

tures. With respect to them, the a priori information is understood in a narrow sense

because it relates to the subsystems only and concerns the a priori knowledge about their

descriptions. We refer to such systems as block-oriented.

The characteristic of the nonlinear subsystem is recovered with the help of nonpara-

metric regression estimates. The kernel and orthogonal series methods are used. Ordered

statistics are also applied. Both offline and online algorithms are investigated. We exam-

ine only these estimation methods and nonlinear models for which we are able to deliver

fundamental results in terms of consistency and convergence rates. There are other tech-

niques, for example, neural networks, which may exhibit a promising performance but

their statistical accuracy is mostly unknown.

For the theory of nonparametric regression, see Efromovich [78], Györfi, Kohler,

Krzyżak, and Walk [140], Härdle [150], Prakasa Rao [241], Simonoff [278], or Wand

and Jones [310]. Nonparametric wavelet estimates are discussed in Antoniadis and

Oppenheim [6], Härdle, Kerkyacharian, Picard, and Tsybakov [151], Ogden [223], and

Walter and Shen [308].
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2 Introduction

Parametric methods are beyond the scope of this book; nevertheless, we mention

Brockwell and Davies [33], Ljung [198], Norton [221], Zhu [332], and Söderström and

Stoica [280].

Nonlinear system identification within the parametric framework is studied by Nells

[218], Westwick and Kearney [316], Marmarelis and Marmarelis [207], Bendat [16],

and Mathews and Sicuranza [208]. These books present identification algorithms based

mostly on the theory of Wiener and Volterra expansions of nonlinear systems. A com-

prehensive list of references concerning nonlinear system identification and applications

has been given by Giannakis and Serpendin [102], see also the 2005 special issue on

system identification of the IEEE Trans. on Automatic Control [199]. A nonparametric

statistical inference for time series is presented in Bosq [26], Fan and Yao [89], and

Györfi, Härdle, Sarda, and Vieu [139].

It should be stressed that nonparametric and parametric methods are supposed to be

applied in different situations. The first are used when the a priori information is nonpara-

metric, that is, when we wish to recover an infinite-dimensional object with underlying

assumptions as weak as possible. Clearly, in such a case, parametric methods can only

approximate, but not estimate, the unknown characteristics. When the information is

parametric, parametric methods are the natural choice. If, however, the unknown charac-

teristic is a complicated function of parameters convergence analysis becomes difficult.

Moreover, serious computational problems can occur. In such circumstances, one can

resort to nonparametric algorithms because, from the computational viewpoint, they are

not discouraging. On the contrary, they are simple but consume computer memory, be-

cause, for example, kernel estimates require all data to be stored. Nevertheless it can be

said that the two approaches do not compete with each other since they are designed to be

applied in quite different situations. The situations differ from each other by the amount

of the a priori information about the identified system. However, a compromise between

these two separate worlds can be made by restricting a class of nonparametric models to

those that consist of a finite dimensional parameter and nonlinear characteristics, which

run through a nonparametric class of univariate functions. Such semiparametric models

can be efficiently identified, and the theory of semiparametric identification is examined

in this book. The methodology of semiparametric statistical inference is examined in

Härdle, Müller, Sperlich, and Werwatz [152], Ruppert, Wand, and Carroll [259], and

Yatchev [329].

For two number sequences an and bn , an = O(bn) means that an/bn is bounded in

absolute value as n → ∞. In particular, an = O(1) denotes that an is bounded, that is,

that supn |an| < ∞. Writing an ∼ bn , we mean that an/bn has a nonzero limit as n → ∞.

Throughout the book, “almost everywhere” means “almost everywhere with respect

to the Lebesgue measure,” whereas “almost everywhere (µ)” means “almost everywhere

with respect to the measure µ.”
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2 Discrete-time Hammerstein systems

In this chapter, we discuss some preliminary aspects of the discrete-time Hammerstein

system. In Section 2.1 we form the input–output equations of the system. A fundamen-

tal relationship between the system nonlinearity and the nonparametric regression is

established in Section 2.2. The use of the correlation theory for recovering the linear

subsystem is discussed in Section 2.3.

2.1 The system

A Hammerstein system, shown in Figure 2.1, consists of a nonlinear memoryless subsys-

tem with a characteristic m(•) followed by a linear dynamic one with an impulse response

{λn}. The output signal Wn of the linear part is disturbed by Zn and Yn = Wn + Zn is the

output of the whole system. Neither Vn nor Wn is available to measurement. Our goal is

to identify the system, that is, to recover both m(•) and {λn}, from observations

(U1, Y1) , (U2, Y2) , . . . , (Un, Yn) , . . . (2.1)

taken at the input and output of the whole system.

Signals coming to the system, that is, the input {. . . , U−1, U0, U1, . . .} and disturbance

{. . . , Z−1, Z0, Z1, . . .} are mutually independent stationary white random signals. The

disturbance has zero mean and finite variance, that is, E Zn = 0 and var [Zn] = σ 2
Z < ∞.

Regarding the nonlinear subsystem, we assume that m(•) is a Borel measurable

function. Therefore, Vn is a random variable. The dynamic subsystem is described by

the state equation
{

Xn+1 = AXn + bVn

Wn = cT Xn,
(2.2)

where Xn is a state vector at time n, A is a matrix, b and c are vectors. Thus,

λn =

{

0, for n = 0,−1,−2, . . .

cT An−1b, for n = 1, 2, 3, . . . ,

and

Wn =

n
∑

i=−∞

λn−i m(Ui ). (2.3)
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4 Discrete-time Hammerstein systems

Zn

YnUn WnVn
{λn}m(•)

Figure 2.1 The discrete-time Hammerstein system.

Neither b nor c is known. The matrix A and its dimension are also unknown. Nevertheless,

the matrix A is stable, all its eigenvalues lie in the unit circle. Therefore, assuming that

Em2(U ) < ∞, (2.4)

the time index at U is dropped, we conclude that both Xn as well as Wn are random

variables. Clearly random processes {. . . , X−1, X0, X1, . . .} and {. . . , W−1, W0, W1, . . .}

are stationary. Consequently, the output process {. . . , Y−1, Y0, Y1, . . .} is also a stationary

stochastic process. Therefore, the problem is well posed in the sense that all signals are

random variables. In the light of this, we estimate both m(•) and {λn} from random

observations (2.1).

The restrictions imposed on the signals entering the system and both subsystems apply

whenever the Hammerstein system is concerned. They will not be repeated in further

considerations, neither lemmas nor theorems.

Input random variables Uns may have a probability density denoted by f (•) or may

be distributed quite arbitrarily. Nevertheless (2.4) holds. It should be emphasized that,

apart from few cases, (2.4) is the only restriction in which the nonlinearity is involved.

Assumption (2.4) is irrelevant to identification algorithms and has been imposed for

only one reason: to guarantee that both Wn and Yn are random variables. Nevertheless it

certainly has an influence on the restrictions imposed on both m(•) and the distribution

of U to meet (2.4). If, for example, U is bounded, (2.4) is satisfied for any m(•). The

restriction also holds, if EU 2 < ∞ and |m(u)| ≤ α + β|u| with any α, β. In yet another

example, EU 4 < ∞ and |m(u)| ≤ α + βu2. For Gaussian U and |m(u)| ≤ W (u), where

W is an arbitrary polynomial, (2.4) is also met. Anyway, the a priori information about

the characteristic is nonparametric because m(•) cannot be represented in a parametric

form. This is because the class of all possible characteristics is very wide.

The family of all stable dynamic subsystems also cannot be parameterized, because

its order is unknown. Therefore, the a priori information about the impulse response

is nonparametric, too. To form a conclusion we infer about both subsystems under

nonparametric a priori information.

In the following chapters, for simplicity, U, W, Y, and Z stand for Un, Wn, Yn, and

Zn , respectively.

2.2 Nonlinear subsystem

2.2.1 The problem and the motivation for algorithms

Fix p ≥ 1 and observe that, since Yp = Z p +
∑p

i=−∞ λp−i m (Ui ) and {Un} is a white

process,

E
{

Yp|U0 = u
}

= µ(u),
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2.2 Nonlinear subsystem 5

Zn

YnUn WnVn
{λn}

Sn

β

ρ(•)

Figure 2.2 The equivalent Hammerstein system.

where

µ(u) = λpm (u) + αp

with αp = Em(U )
∑∞

i=1,i �=p λi . Estimating the regression E
{

Yp|U0 = u
}

, we thus re-

cover m(•) up to some unknown constants λp and αp. If Em(U ) = 0, which is the case,

for example, when the distribution of U is symmetrical with respect to zero and m(•)

is an even function then αp = 0 and we estimate m(•) only up to the multiplicative

constant λp.

Since Yp+n = µ(Un) + ξp+n + Z p+n with ξp+n =
∑p+n

i=−∞,i �=n λp+n−i m(Ui ), it can be

said that we estimate µ(u) from pairs

(U0, Yp), (U1, Yp+1), . . . , (Un, Yp+n), . . . ,

and that the regression µ(u) is corrupted by the noise Z p+n + ξp+n . The first compo-

nent of noise is white with zero mean. Because of dynamics the other noise compo-

nent is correlated. Its mean Eξn = αp is usually nonzero and the variance is equal to

var[m(U )]
∑∞

i=1,i �=p λ2
i . Thus, main difficulties in the analysis of any estimate of µ(•)

are caused by the correlation of {ξn}, that is, the system itself but not by the white

disturbance Zn coming from outside.

Every algorithm estimating the nonlinearity in Hammerstein systems studied in this

book, the estimate is denoted here as µ̂(U0, . . . , Un; Yp, . . . , Yp+n), is linear with respect

to output observations, which means that

µ̂(U0, . . . , Un; θp + ηp, . . . , θp+n + ηp+n)

= µ̂(U0, . . . , Un; θp, . . . , θp+n) + µ̂(U0, . . . , Un; ηp, . . . , ηp+n) (2.5)

and has a natural property that, for any number θ ,

µ̂(U0, . . . , Un; θ, . . . , θ ) → θ as n → ∞ (2.6)

in an appropriate stochastic sense. This property, or rather its consequence, is exploited

when proving consistency. To explain this, observe that with respect to Un and Yn , the

identified system shown in Figure 2.1 is equivalent to that in Figure 2.2 with nonlin-

earity ρ(u) = m(u) − Em(U ) and an additional disturbance β = Em(U )
∑∞

i=1 λi . In

the equivalent system, Eρ(U ) = 0 and E{Yp|U0 = u} = µ(u). From (2.5) and (2.6), it

follows that

µ̂(U0, . . . , Un; Yp, . . . , Yp+n) = µ̂(U0, . . . , Un; Sp + β, . . . , Sp+n + β)

= µ̂(U0, . . . , Un; Sp, . . . , Sp+n)

+ µ̂(U0, . . . , Un; β, . . . , β)
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6 Discrete-time Hammerstein systems

with µ̂(U0, . . . , Un; β, . . . , β) → β as n → ∞. Hence, if

µ̂(U0, . . . , Un; Sp, . . . , Sp+n) → E{Sp|U0 = u}, as n → ∞,

we have

µ̂(U0, . . . , Un; Yp, . . . , Yp+n) → E{Yp|U0 = u}, as n → ∞,

where convergence is understood in the same sense as that in (2.6).

Thus, if the estimate recovers the regression E{Sp|U0 = u} from observations

(U0, Sp), (U1, S1+p), (U2, S2+p), . . . ,

it also recovers E{Yp|U0 = u} from

(U0, Yp), (U1, Y1+p), (U2, Y2+p), . . . .

We can say that if the estimate works properly when applied to the system with input

Un and output Sn (in which Eρ(U ) = 0), it behaves properly also when applied to the

system with input Un and output Yn (in which Em(U ) may be nonzero).

The result of the reasoning is given in the following remark:

REMARK 2.1 Let an estimate have properties (2.5) and (2.6). If the estimate is consistent

for Em(U ) = 0, then it is consistent for Em(U ) �= 0, too.

Owing to the remark, with no loss of generality, in all proofs of consistency of

algorithms recovering the nonlinearity, we assume that Em(U ) = 0.

In parametric problems the nonlinearity is usually a polynomial m(u) = α0 + α1u +

· · · + αquq of a fixed degree with unknown true values of parameters α0, . . . , αq . There-

fore, to apply parametric methods, we must have a great deal more a priori information

about the subsystem. It seems that in many applications, it is impossible to represent

m(•) in a parametric form.

Since the system with the following ARM A type difference equation:

wn + ak−1wn−1 + · · · + a0wn−k = bk−1m(un−1) + · · · + b0m(un−k)

can be described by (2.2), all presented methods can be used to recover the nonlinearity

m(•) in the previous ARM A system.

It will be convenient to denote

φ(u) = E
{

W 2
p |U0 = u

}

. (2.7)

Since Wp =
∑p−1

i=−∞ λi m(Ui ), denoting c0 = Em2(U )
∑∞

i=1,i �=p λ2
i + E2m(U )

(
∑∞

i=1,i �=p λi )
2, c1 = 2λp Em(U )

∑∞
i=1,i �=p λi , and c2 = λ2

p, we find

φ (u) = c0 + c1m(u) + c2m2(u).

To avoid complicated notation, we do not denote explicitly the dependence of the

estimated regression and other functions on p and simply write µ(•) and φ(•).

Results presented in further chapters can be easily generalized on the system shown

in Figure 2.3, where {. . . , ξ0, ξ1, ξ2, . . .} is another zero mean noise. Moreover, {Zn} can
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2.2 Nonlinear subsystem 7

Zn

YnUn
{λn}m(•)

ξn

Figure 2.3 Possible generalization of the system shown in Figure 2.1.

be correlated, that is, it can be the output of a stable linear dynamic system stimulated

by white random noise. So can {ξn}.

It is worth noting that a class of stochastic processes generated by the output process

{Yn} of the Hammerstein system is different from the class of strong mixing processes

considered extensively in the statistical literature concerning the nonparametric inference

from dependent data, see, for example, [26] and [89]. Indeed, the ARMA process {Xn}

in which Xn+1 = aXn + Vn , where 0 < a ≤ 1/2, and where Vns are Bernoulli random

variables is not strong mixing, see [4] and [5]. Such a process can be easily generated

by the Hammerstein system if the input of the whole system has a normal density

and a nonlinear characteristic takes two different values. In the light of that, the strong

mixing approach developed in the statistical literature does not apply in general to the

identification problem of nonlinear systems.

2.2.2 Simulation example

In the chapters devoted to the Hammerstein system, the behavior of the identification

algorithms presented in this book is illustrated with results of simulation examples. In

all examples, the system is described by the following scalar equation:

Xn+1 = aXn + m(Un),

where

m(u) = (1 − e−|u|) sign(u),

(see Figure 2.4). The input signal has a normal density with zero mean and variance 1.

In all algorithms, p = 1, which means that µ(u) = m(u). For a = 0.5, an example of a

1.5

0.5

-0.5

-1.5

-3 -2 -1 0 1 2 3

Figure 2.4 The characteristic m and 200 pairs of input–output observations; a = 0.5.
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8 Discrete-time Hammerstein systems

cloud of 200 input–output observations, we infer from is presented in Figure 2.4. The

quality of each estimate, denoted here by m̂(u), is measured with

MISE =

∫ 3

−3

(m̂(u) − m(u))2du.

2.3 Dynamic subsystem identification

Passing to the dynamic subsystem, we use (2.3) and recall E Zn = 0 to notice E {YiU0} =
∑i

j=−∞ λi− j E {m(Ui )U0} = λi E{m(U )U }. Denoting κi = λi E {Um(U )} , we obtain

κi = E {YiU0} ,

which can be estimated in the following way:

κ̂i =
1

n

n−i
∑

j=1

Yi+ jU j .

THEOREM 2.1 For any i ,

lim
n→∞

E(κ̂i − κi )
2 = 0.

Proof. The estimate is unbiased, that is, E κ̂i = E{YiU0} = κi . Moreover, var[κ̂i ] =

Pn + Qn + Rn with

Pn =
1

n2
var

⎡

⎣

n
∑

j=1

Z i+ jU j

⎤

⎦ =
1

n2

n
∑

j=1

var
[

Z i+ jU j

]

=
1

n
σ 2

Z EU 2,

Qn =
1

n
var [WiU0] ,

and

Rn =
1

n2

n
∑

j=1

n
∑

j=1, j �=i

cov
[

Wi+ jU j , Wi+mUm

]

=
1

n2

n
∑

j=1

(n − j) cov
[

Wi+ jU j , WiU0

]

.

Since Wi =
∑i

j=−∞ λi− j m(U j ), Qn = n−1λ2
i var [m(U )U ]. For the same reason, for

j > 0,

cov
[

Wi+ jU j , WiU0

]

=

i+ j
∑

p=−∞

i
∑

q=−∞

λi+ j−pλi−q cov
[

m(Up)U j , m(Uq )U0

]

= E2{Um(U )}λi+ jλi− j
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2.4 Bibliographic notes 9

See Lemma C.3 in Appendix C, which leads to

|Rn| ≤
1

n2
E2{Um(U )}

n
∑

j=1

(n − j)|λi+ jλi− j | ≤
1

n
E2{Um(U )} max

s
|λs |

∞
∑

j=1

|λ j |.

Thus,

E(κ̂i − κi )
2 = var [κ̂i ] = O

(

1

n

)

(2.8)

which completes the proof.

The theorem establishes convergence of the local error E(κ̂i − κi )
2 to zero as n → ∞.

As an estimate of the whole impulse response {κ1, κ2, κ3, . . .}, we take a sequence

{κ̂1, κ̂2, κ̂3, . . . , κ̂N (n), 0, 0, . . .} and find the mean summed square error (MSSE) is equal

to

MSSE(κ̂) =

N (n)
∑

i=1

E(κ̂i − κi )
2 +

∞
∑

i=N (n)+1

κ2
i .

From (2.8), it follows that the error is not greater than

O

(

N (n)

n

)

+

∞
∑

i=N (n)+1

κ2
i .

Therefore, if N (n) → ∞ as n → ∞ and N (n)/n → 0 as n → ∞,

lim
n→∞

MSSE(κ̂) = 0.

The identity λsτ = E {YsU0}, where τ = E {Um(U )}, allows us to form a nonpara-

metric estimate of the linear subsystem in the frequency domain. Indeed, formation of

the Fourier transform of the identity yields

�(ω)τ = SYU (ω), |ω| ≤ π, (2.9)

where SYU (ω) =
∑∞

s=−∞ κse−isω is the cross-spectral density function of the processes

{Yn} and {Un}. Moreover,

�(ω) =

∞
∑

s=0

λse−isω

is the transfer function of the linear subsystem. Note also that if λ0 = 1, then τ = κ0.

See Chapter 12 for further discussion on the frequency domain identification of linear

systems.

2.4 Bibliographic notes

Various aspects of parametric identification algorithms of discrete-time Hammerstein

systems have been studied by Narendra and Gallman [216]; Haist, Chang, and Luus
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10 Discrete-time Hammerstein systems

[142], Thatchachar and Ramaswamy [289], Kaminskas [175], Gallman [92], Billings

[19], Billings and Fakhouri [20,24], Shih and Kung [276], Kung and Shih [190], Liao and

Sethares [195], Verhaegen and Westwick [301], Giri, Chaoui, and Rochidi [103], Ninness

and Gibson [220], Bai [11,12], and Vörös [305]. The analysis of block–oriented systems

and, in particular, Hammerstein ones, useful for various aspects of identification and its

applications can be found in Bendat [16], Chen [45], Marmarelis and Marmarelis [207],

Mathews and Sicuranza [208], Nells [218], and Westwick and Kearney [316].

Sometimes results concerning Hammerstein systems are given, however not explicitly,

in works devoted to more complicated Hammerstein–Wiener or Wiener–Hammerstein

structures, see, for example, Gardiner [94], Billings and Fakhouri [22, 23], Fakhouri,

Billlings, and Wormald [86], Hunter and Korenberg [168], Korenberg and Hunter [177],

Emara-ShaBaik, Moustafa, and Talaq [79], Boutayeb and Darouach [27], Vandersteen,

Rolain, and Schoukens [296], Bai [10], Bershad, Celka, and McLaughlin [18], and

Zhu [333].

The nonparametric approach offers a number of algorithms to recover the charac-

teristics of the nonlinear subsystem. The most popular kernel estimate can be used

in the offline version, see Chapter 3. For semirecursive and fully recursive forms, see

Chapter 4 and Chapter 5, respectively. Nonparametric orthogonal series identification

algorithms, see Chapter 6, utilize trigonometric, Legendre, Laguerre, Hermite functions

or wavelets. Both classes of estimates can be modified to use ordered input observations

(see Chapter 7), which makes them insensitive to the roughness of the input density.

The Hammerstein model has been used in various and diverse areas. Eskinat, John-

son, and Luyben [82] applied it to describe processes in distillation columns and heat

exchangers. The hysteresis phenomenon in ferrites was analyzed by Hsu and Ngo [166],

pH processes were analyzed by Patwardhan, Lakshminarayanan, and Shah [227], bio-

logical systems were studied by Hunter and Korenberg [168], and Emerson, Korenberg,

and Citron [80] described some neuronal processes. The use of the Hammerstein model

for modeling aspects of financial volatility processes is presented in Capobianco [38].

In Giannakis and Serpendin [102] a comprehensive bibliography on nonlinear system

identification is given, see also the 2005 special issue on system identification of the

IEEE Trans. on Automatic Control [199].

It is also worth noting that the concept of the Hammerstein model originates from

the theory of nonlinear integral equations developed by Hammerstein in 1930 [148], see

also Tricomi [292].
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