Optical Switching Networks

Optical Switching Networks describes all the major switching paradigms developed for modern optical networks, discussing their operation, advantages, disadvantages, and implementation. Following a review of the evolution of optical wavelength division multiplexing (WDM) networks, an overview of the future of optical networks is set out. The latest developments of techniques applied in optical access, local, metropolitan, and wide area networks are covered, including detailed technical descriptions of generalized multiprotocol label switching, waveband switching, photonic slot routing, optical flow, burst, and packet switching. The convergence of optical and wireless access networks is also discussed, as are the IEEE 802.17 Resilient Packet Ring and IEEE 802.3ah Ethernet passive optical network standards and their WDM upgraded derivatives. The feasibility, challenges, and potential of next-generation optical networks are described in a survey of state-of-the-art optical networking testbeds. Animations showing how the key optical switching techniques work are available via the Web, as are lecture slides.

This authoritative account of the major application areas of optical networks is ideal for graduate students and researchers in electrical engineering and computer science as well as practitioners involved in the optical networking industry.

Additional resources for this title are available from www.cambridge.org/9780521868006.

Martin Maier is Associate Professor at the Institut National de la Recherche Scientifique (INRS), University of Quebec, Canada. He received his MSc and PhD degrees, both with distinctions (summa cum laude), from Technical University Berlin, Germany. He was a Postdoc Fellow at MIT and Visiting Associate Professor at Stanford University. His research interests include the design, control, and performance evaluation of next-generation optical networks and their evolutionary WDM upgrade strategies. Dr. Maier is the author of the book Metropolitan Area WDM Networks – An AWG Based Approach.
Optical Switching Networks

MARTIN MAIER
Université du Québec
Montréal, Canada
In love and gratitude to my wonderful wife
and our two little Canadians
Contents

List of illustrations xiv
List of tables xvii
Preface xix
Acknowledgments xxi

Part I Introduction 1

1 Historical overview of optical networks 3
 1.1 Optical point-to-point links 3
 1.2 SONET/SDH 4
 1.3 Multiplexing: TDM, SDM, and WDM 5
 1.4 Optical TDM networks 6
 1.5 Optical WDM networks 7
 1.5.1 All-optical networks 9
 1.5.2 Wavelength conversion 12
 1.5.3 Reconfigurability 13
 1.5.4 Control and management 15

2 Optical switching networks 19
 2.1 End-to-end optical networks 19
 2.2 Applications 21
 2.3 Services 22
 2.4 Switching granularity 23
 2.5 Interlayer networking 26
 2.6 Other issues 28
 2.6.1 Security 29
 2.6.2 Grooming 29

3 Building blocks 31
 3.1 Components 31
 3.2 Transmitters and receivers 34
Contents

3.2.1 Broadband light sources 34
3.2.2 Lasers 35
3.2.3 Optical filters 36
3.3 Transmission impairments 37
3.3.1 Attenuation 37
3.3.2 Dispersion 37
3.3.3 Nonlinearities 39
3.3.4 Crosstalk 40
3.3.5 Noise 40

4 Summary 42
4.1 Historical review 42
4.2 Big picture 43
4.3 Further reading 44
4.3.1 Books 44
4.3.2 Journals and magazines 48
4.3.3 Web links 49

Part II Optical wide area networks 51
Overview 53

5 Generalized multiprotocol label switching 57
5.1 Multiprotocol label switching 57
5.2 Generalized MPLS (GMPLS) 59
5.2.1 Interface switching capability 60
5.2.2 LSP hierarchy 61
5.2.3 LSP control 63
5.2.4 Bidirectional LSP 71
5.2.5 LSP protection and restoration 71
5.3 Implementation 75
5.4 Application 76

6 Waveband switching 77
6.1 Multigranularity optical cross-connect 77
6.2 Waveband grouping 79
6.3 Routing and wavelength assignment 80
6.4 TDM switching and grooming 82
6.5 Implementation 83
Contents

7 Photonic slot routing
- 7.1 Photonic slot 84
- 7.2 Synchronization 86
- 7.3 Sorting access protocol 87
- 7.4 Contention resolution 89
- 7.5 Evolution toward optical packet switching 92
- 7.6 Implementation 93

8 Optical flow switching
- 8.1 Optical flow switching 96
- 8.2 Integrated OFS approaches 97
 - 8.2.1 Tell-and-go reservation 97
 - 8.2.2 Reverse reservation 98
- 8.3 Implementation 98
- 8.4 Comparison between OFS and OBS 100

9 Optical burst switching
- 9.1 OBS framework 104
 - 9.1.1 OBS network edge 104
 - 9.1.2 OBS network core 107
 - 9.1.3 OBS MAC layer 108
- 9.2 Burst assembly algorithms 109
- 9.3 Signaling 113
- 9.4 Scheduling 113
- 9.5 Service differentiation 114
- 9.6 Contention resolution 118
 - 9.6.1 Fiber delay lines 118
 - 9.6.2 Burst segmentation 119
 - 9.6.3 Deflection routing 122
 - 9.6.4 Wavelength conversion 123
- 9.7 Multicasting 124
- 9.8 Protection 125
- 9.9 OBS derivatives 126
 - 9.9.1 Labeled OBS 126
 - 9.9.2 Wavelength-routed OBS 127
 - 9.9.3 Dual-header OBS 129
- 9.10 Implementation 131
 - 9.10.1 JIT signaling 132
 - 9.10.2 Wavelength assignment and deflection routing 133
 - 9.10.3 Labeled OBS 133
- 9.11 Application 134
10 Optical packet switching 135

10.1 Optical packet switches 137
10.1.1 Generic packet format 137
10.1.2 Generic switch architecture 138
10.1.3 Synchronous versus asynchronous switches 139

10.2 Contention resolution 140
10.2.1 Buffering 140
10.2.2 Wavelength conversion 143
10.2.3 Unified contention resolution 144

10.3 Service differentiation 145

10.4 Self-routing 146

10.5 Example OPS node architectures 147
10.5.1 Space switch architecture 147
10.5.2 Broadcast-and-select architecture 149
10.5.3 Wavelength-routing architecture 150

10.6 Implementation 151

Part III Optical metropolitan area networks 155

Overview 157

11 Resilient packet ring 161

11.1 Architecture 161
11.2 Access control 165
11.3 Fairness control 167
11.4 Protection 170

12 WDM ring networks 174

12.1 Slotted rings without channel inspection 175
12.1.1 MAWSON 176
12.2 Slotted rings with channel inspection 177
12.2.1 RINGO 178
12.2.2 Synchronous round robin (SRR) 178
12.2.3 HORNET 179
12.2.4 A posteriori buffer selection schemes 180
12.2.5 FT-TR rings 181

12.3 Slotted rings with control channel 182
12.3.1 Bidirectional HORNET – SAR-OD 182
12.3.2 Segmentation/reassembly 182
12.3.3 Wavelength stacking 183
12.3.4 Virtual circles with DWADMs 184
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4 Multitoken rings</td>
<td>185</td>
</tr>
<tr>
<td>12.4.1 MTIT</td>
<td>186</td>
</tr>
<tr>
<td>12.5 Meshed rings</td>
<td>187</td>
</tr>
<tr>
<td>12.5.1 SMARTNet</td>
<td>187</td>
</tr>
<tr>
<td>12.6 Fairness control and QoS support</td>
<td>189</td>
</tr>
<tr>
<td>12.6.1 Fairness control</td>
<td>189</td>
</tr>
<tr>
<td>12.6.2 QoS support</td>
<td>191</td>
</tr>
<tr>
<td>13 RINGOSTAR</td>
<td>194</td>
</tr>
<tr>
<td>13.1 Architecture</td>
<td>195</td>
</tr>
<tr>
<td>13.2 Proxy stripping</td>
<td>197</td>
</tr>
<tr>
<td>13.3 Access and fairness control</td>
<td>199</td>
</tr>
<tr>
<td>13.3.1 Reservation on star subnetwork</td>
<td>200</td>
</tr>
<tr>
<td>13.3.2 Adaptation of DVSR</td>
<td>202</td>
</tr>
<tr>
<td>13.4 Protectoration</td>
<td>204</td>
</tr>
<tr>
<td>13.4.1 Limitations of RPR protection</td>
<td>204</td>
</tr>
<tr>
<td>13.4.2 Protectoration</td>
<td>205</td>
</tr>
<tr>
<td>13.5 Network lifetime</td>
<td>216</td>
</tr>
<tr>
<td>Part IV Optical access and local area networks</td>
<td>219</td>
</tr>
<tr>
<td>Overview</td>
<td>221</td>
</tr>
<tr>
<td>14 EPON</td>
<td>225</td>
</tr>
<tr>
<td>14.1 Architecture</td>
<td>226</td>
</tr>
<tr>
<td>14.2 Multipoint control protocol (MPCP)</td>
<td>227</td>
</tr>
<tr>
<td>14.3 Dynamic bandwidth allocation (DBA)</td>
<td>229</td>
</tr>
<tr>
<td>14.3.1 Statistical multiplexing methods</td>
<td>229</td>
</tr>
<tr>
<td>14.3.2 Absolute QoS assurances</td>
<td>231</td>
</tr>
<tr>
<td>14.3.3 Relative QoS assurances</td>
<td>234</td>
</tr>
<tr>
<td>14.3.4 Decentralized DBA algorithms</td>
<td>237</td>
</tr>
<tr>
<td>15 WDM EPON</td>
<td>238</td>
</tr>
<tr>
<td>15.1 State of the art</td>
<td>238</td>
</tr>
<tr>
<td>15.2 TDM to WDM EPON migration</td>
<td>240</td>
</tr>
<tr>
<td>15.3 WDM extensions to MPCP</td>
<td>241</td>
</tr>
<tr>
<td>15.3.1 Discovery and registration</td>
<td>241</td>
</tr>
<tr>
<td>15.3.2 Upstream coordination</td>
<td>243</td>
</tr>
<tr>
<td>15.3.3 Downstream coordination</td>
<td>243</td>
</tr>
</tbody>
</table>
15.4 Dynamic wavelength allocation (DWA)
- 15.4.1 Online scheduling 244
- 15.4.2 Offline scheduling 244

16 STARGATE
- 16.1 Architecture 247
 - 16.1.1 Network architecture 247
 - 16.1.2 Node architecture 249
- 16.2 Operation 250
 - 16.2.1 Discovery and registration 250
 - 16.2.2 Piggyback REPORT MPCP message 250
 - 16.2.3 STARGATE MPCP message 251
 - 16.2.4 STARGATING service 252
 - 16.2.5 Access control on ring and PSC 252
- 16.3 Applications 252
 - 16.3.1 Online gaming 253
 - 16.3.2 Peer-to-peer file sharing 254
 - 16.3.3 Discussion 255

17 Gigabit Ethernet
- 17.1 Gigabit Ethernet (GbE) 256
 - 17.1.1 Media access control (MAC) layer 257
 - 17.1.2 Gigabit-media independent interface (GMII) 259
 - 17.1.3 Physical (PHY) layer 259
- 17.2 10-Gigabit Ethernet (10GbE) 260

18 Radio-over-fiber networks
- 18.1 Fiber-optic microcellular radio 262
 - 18.1.1 Distributed antenna system 262
 - 18.1.2 Dynamic channel assignment 263
 - 18.1.3 Remote modulation 264
- 18.2 RoF networks 265
 - 18.2.1 Radio-over-SMF 265
 - 18.2.2 Radio-over-MMF 266
- 18.3 WDM RoF networks 266
- 18.4 RoF and FTTH networks 267
- 18.5 RoF and WDM PON networks 267
- 18.6 RoF and rail track networks 268
Part V Testbeds

19 What worked and what didn't

20 Testbed activities

20.1 GMPLS
 20.1.1 LION
 20.1.2 GSN/GSN+
 20.1.3 MUPBED
 20.1.4 DRAGON
 20.1.5 ONFIG
 20.1.6 KDDI
 20.1.7 ADRENALINE
 20.1.8 ODIN
 20.1.9 NetherLight/StarLight
 20.1.10 CHEETAH
 20.1.11 USN

20.2 Waveband switching
 20.2.1 ATDnet testbed

20.3 Photonic slot routing
 20.3.1 AT&T Laboratories testbed

20.4 Optical flow switching
 20.4.1 NGI ONRAMP
 20.4.2 CTVR

20.5 Optical burst switching
 20.5.1 ATDnet
 20.5.2 JumpStart
 20.5.3 Optical Communication Center
 20.5.4 University of Tokyo
 20.5.5 JGN II
 20.5.6 Key Laboratory

20.6 Optical packet switching
 20.6.1 RINGO
 20.6.2 HORNET

21 Summary

Bibliography
Index
Illustrations

1.1 Optical single-hop connections: (a) point-to-point, (b) star, and (c) ring configurations.
1.2 Wavelength division multiplexing (WDM).
1.3 Optical WDM networks: (a) opaque and (b) transparent network architectures.
1.4 Optical add-drop multiplexer (OADM) with a single fiber link carrying M wavelengths.
1.5 Optical cross-connect (OXC) with N fiber links, each carrying M wavelengths.
1.6 Reconfigurable optical add-drop multiplexer (ROADM) based on cross-bar switches with a single fiber link carrying two wavelengths.
2.1 Hierarchy of optical switching networks.
2.2 Optical switching networks offering services to applications.
3.1 Architectural building blocks: (a) $S \times 1$ combiner, (b) $1 \times S$ splitter, (c) waveband partitioner, (d) waveband departitioner, (e) $D \times D$ passive star coupler (PSC), and (f) $D \times D$ AWG with $D = 2$.
3.2 Schematic layout of an $N \times N$ AWG.
3.3 Routing connectivity of an 8×8 AWG.
3.4 Attenuation of an optical fiber.
5.1 Automatic switched optical network (ASON) reference points.
5.2 Common control plane for disparate types of optical switching networks.
5.3 Hierarchy of GMPLS label switched paths (LSPs).
5.4 GMPLS label switched path (LSP) tunnels.
5.5 Setup of GMPLS label switched path (LSP) tunnels.
5.6 Fault localization using the LMP fault management procedure.
6.1 Multigranularity photonic cross-connect consisting of a three-layer multigranularity optical cross-connect (MG-OXC) and a digital cross-connect (DXC).
7.1 Photonic slot routing (PSR) functions: (a) photonic slot switching, (b) photonic slot copying, and (c) photonic slot merging.
7.2 Access control in PSR networks based on destination of photonic slot.
7.3 Architecture of a PSR node.
7.4 Architecture of a PSR bridge.
7.5 Architecture of an SDL bridge.
Illustrations xv

7.6 PSR node with multiple input/output ports. 91
7.7 Node architecture for wavelength stacking. 93
8.1 Optical flow switching (OFS) versus conventional electronic routing. 96
8.2 NGI ONRAMP architecture. 99
9.1 OBS network architecture. 104
9.2 Distributed OBS signaling with one-way reservation. 105
9.3 Block diagram of OBS networks consisting of IP, MAC, and optical layers. 109
9.4 Burst length and time thresholds for burst assembly algorithms. 110
9.5 Service class isolation in extra-offset-based QoS scheme. 115
9.6 Burst segment dropping policies: (a) tail dropping and (b) head dropping. 121
9.7 Wavelength-routed OBS (WR-OBS) network architecture. 128
10.1 Generic optical packet format. 137
10.2 Generic OPS node architecture. 138
10.3 Buffering schemes: (a) output buffering, (b) recirculation buffering, and (c) input buffering. 141
10.4 OPS node architecture with input tunable wavelength converters (TWCs) and output fiber delay lines (FDLs). 143
10.5 Space switch OPS node architecture. 148
10.6 Broadcast-and-select OPS node architecture. 149
10.7 Wavelength-routing OPS node architecture. 150
III.1 Metro area networks: metro core rings interconnect metro edge rings and connect them to long-haul backbone networks. 158
11.1 Bidirectional RPR network with destination stripping and spatial reuse. 162
11.2 Multicasting in an RPR network. 163
11.3 RPR node architecture. 165
11.4 Fairness and spatial reuse illustrated by the parallel parking lot scenario. 167
11.5 Wrapping (optional in RPR). 171
11.6 Steering (mandatory in RPR). 172
12.1 Unidirectional WDM ring network with \(N = 4 \) nodes and \(W = 4 \) wavelengths. 175
12.2 Classification of WDM ring network MAC protocols. 176
12.3 Slotted unidirectional WDM ring with \(W = 4 \) wavelengths. 176
12.4 Slot structure of Request/Allocation Protocol (RAP) in MAWSON. 177
12.5 SRR node architecture with VOQs and channel inspection capability. 179
12.6 Node architecture for wavelength stacking. 184
12.7 Virtual circles comprising nodes whose DWADMs are tuned to the same wavelength. 185
12.8 MTIT node architecture. 186
12.9 SMARTNet: Meshed ring with \(K = 6 \) wavelength routers, each connected to its \(M = 2 \) nd neighboring routers. 188
12.10 Wavelength paths in a meshed ring with \(K = 4 \) and \(M = 2 \), using \(W = 3 \) wavelengths. 188
12.11 Medium access priorities in ring networks. 189
Illustrations

13.1 RINGOSTAR architecture with $N = 16$ and $D = S = 2$. 196
13.2 RINGOSTAR node architecture for either fiber ring: (a) ring homed node and (b) ring-and-star homed node. 197
13.3 Proxy stripping: (a) $N = 12$ ring nodes, where $P = 4$ are interconnected by a dark-fiber star subnetwork; (b) proxy stripping in conjunction with destination stripping and shortest path routing. 198
13.4 Dynamics of adapted DVSR fairness control protocol. 203
13.5 Protectoration network architecture for $N = 16$ and $P = D \cdot S = 2 \cdot 2 = 4$. 206
13.6 Protectoration architecture of ring-and-star homed node with home channel $\chi_i \in \{1, 2, \ldots, D \cdot S\}$: (a) node architecture for both rings and (b) buffer structure for either ring. 207
13.7 Wavelength assignment in protectoration star subnetwork. 209
13.8 RPR network using protectoration in the event of a fiber cut. 212
14.1 EPON architecture. 227
14.2 Operation of multipoint control protocol (MPCP). 228
14.3 Classification of dynamic bandwidth allocation (DBA) algorithms for EPON. 229
14.4 Bandwidth guaranteed polling (BGP) tables. 232
15.1 WDM extensions to MPCP protocol data units (PDUs): (a) REGISTER_REQ, (b) GATE, and (c) the proposed RX_CONFIG (extensions are shown bold). 242
16.1 STARGATE network architecture comprising $P = 4$ central offices (COs) and $N_r = 12$ RPR ring nodes. 248
16.2 Optical bypassing of optical line terminal (OLT) and central office (CO). 248
16.3 Wavelength routing of an 8×8 arrayed waveguide grating (AWG) using $R = 1$ free spectral range (FSR). 249
16.4 REPORT MPCP message. 251
17.1 Gigabit Ethernet (GbE) MAC and PHY layers diagram. 257
17.2 Gigabit Ethernet (GbE) supported link distances. 260
18.1 Fiber optic microcellular radio system based on canisters connected to base stations via fiber links. 263
18.2 Remote modulation at the radio port of a fiber optic microcellular radio network. 264
18.3 Radio-over-SMF network downlink using electroabsorption modulators (EAMs) for different radio client signals. 265
18.4 Simultaneous modulation and transmission of FTTH baseband signal and RoF RF signal using an external integrated modulator. 267
18.5 Moving cell-based RoF network architecture for train passengers. 268
20.1 DRAGON control plane architecture. 276
20.2 CHEETAH circuit-switched add-on service to the connectionless Internet. 278
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Wavelength conversion</td>
<td>12</td>
</tr>
<tr>
<td>1.2</td>
<td>FCAPS model</td>
<td>17</td>
</tr>
<tr>
<td>2.1</td>
<td>Switching granularity</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>Transmitters: tuning ranges and tuning times</td>
<td>35</td>
</tr>
<tr>
<td>3.2</td>
<td>Receivers: tuning ranges and tuning times</td>
<td>37</td>
</tr>
<tr>
<td>9.1</td>
<td>Forward resource reservation (FRR) parameters</td>
<td>111</td>
</tr>
<tr>
<td>11.1</td>
<td>Traffic classes in RPR</td>
<td>166</td>
</tr>
<tr>
<td>21.1</td>
<td>Optical switching networks testbeds</td>
<td>283</td>
</tr>
</tbody>
</table>
Optical fiber is commonly recognized as an excellent transmission medium owing to its advantageous properties, such as low attenuation, huge bandwidth, and immunity against electromagnetic interference. Because of their unique properties, optical fibers have been widely deployed to realize high-speed links that may carry either a single wavelength channel or multiple wavelength channels by means of wavelength division multiplexing (WDM). The advent of Erbium doped fiber amplifiers was key to the commercial adoption of WDM links in today’s network infrastructure. WDM links offer unprecedented amounts of capacity in a cost-effective manner and are clearly one of the major success stories of optical fiber communications.

Since their initial deployment as high-capacity links, optical WDM fiber links turned out to offer additional benefits apart from high-speed transmission. Most notably, the simple yet very effective concept of optical bypassing enabled network designers to let in-transit traffic remain in the optical domain without undergoing optical-electrical-optical conversion at intermediate network nodes. As a result, intermediate nodes can be optically bypassed and costly optical-electrical-optical conversions can be avoided, which typically represent one of the largest expenditures in optical fiber networks in terms of power consumption, footprint, port count, and processing overhead. More important, optical bypassing gave rise to so-called all-optical networks in which optical signals stay in the optical domain all the way from source node to destination node.

All-optical networks were quickly embraced by both academia and industry, and the research and development of novel architectures, techniques, mechanisms, algorithms, and protocols in the area of all-optical network design took off immediately worldwide. The outcome of these global research and development efforts is the deployment of optical network technologies at all hierarchical levels of today’s network infrastructure covering wide, metropolitan, access, and local areas.

The goals of this book are manifold. First, we set the stage by providing a brief historical overview of the beginnings of optical networks and the major achievements over the past few decades, thereby highlighting key enabling technologies and techniques that paved the way to current state-of-the-art optical networks. Next, we elaborate on the big picture of future optical networks and identify the major steps toward next-generation optical networks. The major contribution of this book is an up-to-date overview of the latest and most important developments in the area of optical wide, metropolitan, access, and local area networks. We pay particular attention to recently standardized and emerging high-performance switching paradigms designed for the cost-effective and
Preface

bandwidth-efficient support of a variety of both legacy and new applications and services at all optical network hierarchy levels. In addition, we explain recently standardized Ethernet-based optical metro, access, and local area networks in great detail and report ongoing research on their performance enhancements. After describing the concepts and underlying techniques of the various optical switching paradigms at length, we take a comprehensive look at current testbed activities carried out around the world to better understand the implementation complexity associated with each of the described optical switching techniques, as well as to get an idea of what future optical switching networks are expected to look like. Finally, we include a chapter on the important topic of converging optical (wired) networks with their wireless counterparts.

This book was written to be used for teaching graduate students as well as to provide communications networks researchers, engineers, and professionals with a thorough overview and an in-depth understanding of state-of-the-art optical switching networks and how they support new and emerging applications and services.
Acknowledgments

I am grateful to Dr. Andreas Gladisch of Deutsche Telekom for introducing me to the exciting research area of optical networks many years ago. I also would like to thank my former advisor Prof. Adam Wolisz of the Technical University of Berlin for his guidance of my initial academic steps. In particular, I am grateful to my mentor Prof. Martin Reisslein from Arizona State University and his former PhD students Chun Fan, Hyo-Sik Yang, Michael P. McGarry, and Patrick Seeling for their immensely fruitful collaboration. I am deeply grateful to Dr. Martin Herzog for his significant contributions over the past few years and his review of parts of this book. Furthermore, I would like to acknowledge the outstanding support of Prof. Michael Scheutzow and his group members (former or current) Stefan Adams, Frank Aurzada, Matthias an der Heiden, Michel Sortais, and Henryk Zähle of the Technical University of Berlin. In addition, I am grateful to Prof. Chadi M. Assi and Ahmad Dhaini of Concordia University and Prof. Abdallah Shami of the University of Western Ontario for their excellent collaboration on performance-enhanced Ethernet PONs. I also would like to thank Prof. Eytan Modiano of the Massachusetts Institute of Technology and Prof. Leonid G. Kazovsky of Stanford University for being my hosts during my research visits and for their fruitful discussions and insightful comments.

At Cambridge University Press, I would like to thank Dr. Phil Meyler for offering me the opportunity to write this book and Anna Littlewood for making the publication process such a smooth and enjoyable experience.

Finally and most importantly, I am deeply grateful to my wife Alexie who supported and encouraged me with all her love, strength, and inspiration throughout the past year and a half while I wrote this book. This book is dedicated to my wife and our two children; it not only carries all the technical details but also the countless personal memories of our first two years in Canada.