Core Topics in Mechanical Ventilation
Iain Mackenzie in zero-gravity training for Professor Hawking’s flight, April 26, 2007.
Core Topics in Mechanical Ventilation

Edited by

IAIN MACKENZIE
Consultant in Intensive Care Medicine and Anaesthesia
# Contents

*Contributors*  page vii  
Foreword by Timothy W. Evans  ix  
Preface  xi  
Introductory Notes  xiii  

1. Physiology of ventilation and gas exchange  
   HUGH MONTGOMERY  1  

2. Assessing the need for ventilatory support  
   MICK NIELSEN AND IAIN MACKENZIE  21  

3. Oxygen therapy, continuous positive airway pressure and non-invasive ventilation  
   IAN CLEMENT, LEIGH MANSFIELD AND SIMON BAUDOUIN  32  

4. Management of the artificial airway  
   PETER YOUNG AND IAIN MACKENZIE  54  

5. Modes of mechanical ventilation  
   PETER MACNAUGHTON AND IAIN MACKENZIE  88  

6. Oxygenation  
   BILL TUNNICLIFE AND SANJOY SHAH  115  

7. Carbon dioxide balance  
   BRIAN KEOGH AND SIMON FINNEY  142  

8. Sedation, paralysis and analgesia  
   RUSSELL R. MILLER III AND E. WESLEY ELY  160  

9. Nutrition in the mechanically ventilated patient  
   CLARE REID  184  

10. Mechanical ventilation in asthma and chronic obstructive pulmonary disease  
    DAVID TUXEN AND MATTHEW T. NAUGHTON  196
Contents

11. Mechanical ventilation in patients with blast, burn and chest trauma injuries
    WILLIAM T. MCBRIDE AND BARRY McGRATTAN

12. Ventilatory support: extreme solutions
    ALAIN VUYLSTEKE

13. Heliox in airway obstruction and mechanical ventilation
    HUBERT TRÜBEL

14. Adverse effects and complications of mechanical ventilation
    IAIN MACKENZIE AND PETER YOUNG

15. Mechanical ventilation for transport
    TERRY MARTIN

16. Special considerations in infants and children
    ROB ROSS RUSSELL AND NATALIE YEANEY

17. Tracheostomy
    ABHIRAM MALLICK, ANDREW BODENHAM AND IAIN MACKENZIE

18. Weaning, extubation and de-cannulation
    IAIN MACKENZIE

19. Long-term ventilatory support
    CRAIG DAVIDSON

20. The history of mechanical ventilation
    IAIN MACKENZIE

Glossary

Index

vi
Contributors

Simon Baudouin, FRCP
Senior Lecturer
Department of Anaesthesia and Critical Care Medicine
Royal Victoria Infirmary
Newcastle-upon-Tyne, UK

Andrew Bodenham, FRCA
Consultant in Anaesthesia and Intensive Care Medicine
Leeds General Infirmary
Leeds, UK

Iain Clement, PhD MRCP FRCA
Consultant in Anaesthesia and Intensive Medicine
Department of Anaesthesia and Critical Care Medicine
Royal Victoria Infirmary
Newcastle-upon-Tyne, UK

Craig Davidson, FRCP
Director, Lane Fox Respiratory Unit
Guy’s and St. Thomas’ NHS Foundation Trust
London, UK

E. Wesley Ely, MD MPH
Professor and Associate Director of Aging Research
Division of Allergy, Pulmonary, and Critical Care Medicine
Vanderbilt University School of Medicine
Veterans Affairs, Tennessee Valley Geriatric Research, Education, and Clinical Center
Nashville, Tennessee, USA

Simon Finney, PhD MRCP FRCA
Consultant in Intensive Care Medicine and Anaesthesia
Royal Brompton and Harefield NHS Trust
London, UK

Brian Keogh, FRCA
Consultant in Intensive Care Medicine and Anaesthesia
Royal Brompton and Harefield NHS Trust
London, UK

Iain Mackenzie, DM MRCP FRCA
Consultant in Intensive Care Medicine and Anaesthesia
John Farman Intensive Care Unit
Addenbrooke’s Hospital
Cambridge, UK

Peter Macnaughton, MD MRCP FRCA
Consultant in Intensive Care Medicine and Anaesthesia
Plymouth Hospitals NHS Trust
Derriford
Plymouth, UK

Abhiram Mallick, FRCA
Consultant in Anaesthesia and Intensive Care Medicine
Leeds General Infirmary
Leeds, UK

Leigh Mansfield
Senior Physiotherapist
Department of Anaesthesia and Critical Care Medicine
Royal Victoria Infirmary
Newcastle-upon-Tyne, UK
List of contributors

Terry Martin, MSc FRCS FRCA
Consultant in Anaesthesia and Intensive Care
The Royal Hampshire County Hospital
Winchester, UK

William T. McBride, BSc MD FRCA FFARCS(I)
Consultant Cardiac Anaesthetist
Royal Victoria Hospital
Belfast, UK

Barry McGrattan, FFARCS(I)
Specialist Registrar in Anaesthesia
Royal Victoria Hospital
Belfast, UK

Russell R. Miller III, MD MPH
Assistant Professor
Division of Critical Care and Pulmonary Medicine
LDS and IMC Hospitals
University of Utah School of Medicine
Salt Lake City, Utah, USA

Hugh Montgomery, MD FRCPE
Director, Institute for Human Health and Performance and Consultant Intensivist
UCL Hospitals
London, UK

Matthew T. Naughton, MD FRACP
Associate Professor of Head, General Respiratory and Sleep Medicine
The Alfred Hospital
Prahran
Melbourne, Australia

Mick Nielsen, FRCA
Consultant in Anaesthesia and Intensive Care
Southampton University Hospitals NHS Trust
Southampton, UK

Clare Reid, PhD SRD
Research Dietician
Division of Anaesthesia
University of Cambridge
Addenbrooke’s Hospital
Cambridge, UK

Rob Ross Russell, MD FRCPCH
Consultant in Paediatric Intensive Care Medicine
Addenbrooke’s Hospital
Cambridge, UK

Sanjoy Shah, MD MRCP EDIC
Consultant in Intensive Care Medicine
University Hospital Wales
Cardiff, UK

Hubert Trübel, MD
Consultant in Paediatrics
Department of Paediatrics
HELIOS Kilinikum Wuppertal
University of Wittenburg/Herdeche
Wuppertal, Germany

Bill Tunnicliffe, FRCA
Consultant in Intensive Care Medicine and Anaesthesia
Queen Elizabeth Hospital
Birmingham, UK

David Tuxen, MBBS FRACP MD Dip DHM FJFICM
Associate Professor of Critical Care
The Alfred Hospital
Prahran
Melbourne, Australia

Alain Vuylsteke, MD FRCA
Director of Critical Care
Papworth Hospital NHS Trust
Papworth Everard
Cambridgeshire, UK

Natalie Yeaney, MD FAAP
Consultant Neonatal Intensivist
Addenbrooke’s Hospital
Cambridge, UK

Peter Young, MD FRCA
Consultant in Intensive Care and Anaesthesia
The Queen Elizabeth Hospital
King’s Lynn, UK
Foreword

Bjorn Ibsen, an anaesthetist and intensivist who practiced for most of his career in Copenhagen, Denmark, died on 7 August 2007. Ibsen is widely regarded as the father of Intensive Care Medicine, the nativity of which occurred in his home city in 1952 during a polio epidemic. Ibsen had trained in radiology, surgery, pathology and gynaecology before travelling to Massachusetts General Hospital in 1949 to gain specialist experience in anaesthesia. He returned to Copenhagen in 1950 and assumed a leading role in managing one of the world’s worst polio epidemics that started only two years later. Some 2899 cases developed among the population of two million. Too weak to cough, many patients succumbed to secretion retention with associated carbon dioxide retention. Negative pressure ventilation was effectively the only form of support then available, but Ibsen found that tracheostomy, or endotracheal intubation combined with the careful application of intermittent positive pressure ventilation administered by relays of doctors, medical students and others, was an effective means of overcoming the devastating effects of the disease. In the end, over 1500 practitioners aspirated secretions and performed manual ventilation in shifts. Mortality fell markedly. As a result, the idea that critically ill patients should be supported in centralized facilities by individuals experienced in their care was adopted worldwide.

The new specialty emerged in varying phenotypes according to the history, individual preferences and expertise of those driving the change. In the United States, physicians trained in pulmonary medicine have traditionally also provided critical care. In the United Kingdom, the base specialty of anaesthesia has borne the brunt of intensive care provision over many decades. Only in recent years has the value of bringing varying expertise to intensive care management (ICM) from different clinical base specialties been recognized more formally. Thus in Australia a joint intercollegiate faculty of ICM has been developed, a model that was to an extent copied in the UK. Formal training programmes have been developed, culminating in the UK in ICM being recognized as a specialty in the year 2000. The emergence of diploma and other examinations designed to test competencies in intensive care has been rapid. The strength of national and international specialist societies has grown, with associated academic advancement publicized through congresses and increasingly in highly cited journals.

Against this background, it has given me great pleasure to write the foreword for this exciting volume, expertly conceived and edited by Dr Iain Mackenzie. The contributors to this book come from a wide range of clinical and national backgrounds, thereby reflecting the heterogeneity that is in many senses the strength of the specialty. Moreover, the content reflects the staggering advances that have been made during the past 50 years in the delivery of mechanical ventilatory support. Even those phenomena which would have been
Foreword

easily recognizable to Ibsen, such as the delivery of oxygen therapy, have been subjected to scientific evaluation and technological development. Tracheostomy, used widely in the 1950s polio epidemic, is now performed at the bedside, an innovation of which I suspect Ibsen would have approved. The content of chapters dealing with sedation, paralysis and analgesia might have been more familiar to him, but the agents now employed, the increased understanding of their properties and the clinical benefits attributable to their avoidance, where possible, are evidence of the advances made in this area of pharmacology. The outreach of expertise into the wards in pursuit of the ‘intensive care without walls’ has been greatly facilitated by the advent of non-invasive mechanical ventilatory support.

Finally, the scientific advances in our evaluation of the effects of mechanical ventilation, the recognition that it can do harm if applied inappropriately and the evidence base concerning its use in patients with a wide variety of primary and secondary lung pathologies is a truly outstanding achievement that intensive care medicine can be proud of. I suspect that Bjorn Ibsen, were he privileged to read this volume, would feel the same.

Timothy W. Evans, BSc DSc FRCP FRCA FMedSci
Professor of Intensive Care Medicine
Imperial College
London

Consultant in Intensive Care Medicine
Royal Brompton Hospital
London
Preface

Respiratory support is recognized to be a key component in the resuscitation of acutely ill patients and, as such, the basics are taught to all those who seek to acquire life support skills. Following stabilization, the continued provision of respiratory support, be it in the emergency department, respiratory ward or intensive care unit, is largely taken for granted. However, as the ARDSnet study has recently reminded us, the way we manage mechanical ventilation in the medium and long term actually has a significant impact on patient outcome. Although the literature is full of the evidence necessary to provide optimal respiratory support, synthesizing this evidence into a cohesive and logical approach would be an enormous task for one individual. On the other hand, excellent sections on respiratory support can be found in the major textbooks on critical care and indeed the ‘principles and practice of mechanical ventilation’ is the sole subject of Martin Tobin’s authoritative tome of that name. However, these large reference books are expensive and less than suitable for those who need a more concise and practical overview of the subject. This book therefore seeks to fill the gap between the journals and the major textbooks on critical care and indeed the ‘principles and practice of mechanical ventilation’ is the sole subject of Martin Tobin’s authoritative tome of that name. However, these large reference books are expensive and less than suitable for those who need a more concise and practical overview of the subject. This book therefore seeks to fill the gap between the journals and the major textbooks on critical care and indeed the ‘principles and practice of mechanical ventilation’ is the sole subject of Martin Tobin’s authoritative tome of that name. However, these large reference books are expensive and less than suitable for those who need a more concise and practical overview of the subject. This book therefore seeks to fill the gap between the journals and the major textbooks on critical care and indeed the ‘principles and practice of mechanical ventilation’ is the sole subject of Martin Tobin’s authoritative tome of that name. However, these large reference books are expensive and less than suitable for those who need a more concise and practical overview of the subject. This book therefore seeks to fill the gap between the journals and the major textbooks on critical care and indeed the ‘principles and practice of mechanical ventilation’ is the sole subject of Martin Tobin’s authoritative tome of that name.

I would welcome any feedback so that future editions of this book can better meet the needs of its readers.

My colleagues in Cambridge, both nursing and medical, must be credited with persuading me of the need for a book such as this, and for that I am grateful. I am also indebted to the contributors from around the world who responded so favourably to my request that they contribute, and then followed through with their chapters. Frank McGinn (GE Healthcare Technologies), Dan Gleeson (Cape Engineering) and John Wines (Cape Engineering) kindly supplied me with information about the histories of their respective companies. I have received assistance in sourcing some of the images from Mr Pyush Jani and Dr Helen Smith. I am very grateful to David Miller for checking the correctness of the English, but must accept any blame for any errors that have crept through. Finally, I would like to thank Diane, my wife, and Katherine, Rebecca, Charlotte and Amy, my daughters, for their unflagging support over the last two years while this book was in production.

Iain Mackenzie
Introductory notes

Physiological notation
Those with a dislike of mathematics will be pleased to know that none of the equations in this book need to be memorized. Having said that, though, understanding the concepts that are encapsulated by the equations presented will help the reader enormously in achieving a significantly deeper level of understanding. As many of the terms in the equations refer to physiological quantities, physiological notation is used, and therefore being able to decipher physiological notation will be helpful.

Table 1 In-text notation for commonly used physiological quantities

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Correct notation</th>
<th>In-text notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fractional inspired oxygen concentration</td>
<td>$F_{O_2}$</td>
<td>$F_{O_2}$</td>
</tr>
<tr>
<td>Partial pressure of carbon dioxide in alveolar gas</td>
<td>$P_{ACO_2}$</td>
<td>$P_aCO_2$</td>
</tr>
<tr>
<td>Partial pressure of carbon dioxide in arterial blood</td>
<td>$P_{aCO_2}$</td>
<td>$PaCO_2$</td>
</tr>
<tr>
<td>Partial pressure of oxygen in alveolar gas</td>
<td>$P_{AO_2}$</td>
<td>$PaO_2$</td>
</tr>
<tr>
<td>Partial pressure of oxygen in arterial blood</td>
<td>$P_{aO_2}$</td>
<td>$PaO_2$</td>
</tr>
<tr>
<td>Partial pressure of oxygen dioxide</td>
<td>$P_{CO_2}$</td>
<td>$PCO_2$</td>
</tr>
<tr>
<td>Haemoglobin oxygen saturation in arterial blood</td>
<td>$S_{aO_2}$</td>
<td>$SaO_2$</td>
</tr>
</tbody>
</table>

(Figure 1). The reader may be relieved to hear that formal physiological notation has been completely avoided in the text because it can sometimes extend significantly below the text baseline, as in, for example, the notation representing the partial pressure of oxygen in arterial blood:

$P_{aO_2}$.

However, some quantities are mentioned so often in the text that to refer to these in words would hinder, rather than help, the flow of the text. Therefore, for the most common of these quantities, non-physiological notation has been used for
in-text references, as it is in many other publications (Table 1).

Units

The European convention on units has been maintained throughout, using kilopascals (kPa) for gas pressures rather than millimetres of mercury (mm Hg), but the conversion factors can be found in Table 2. However, for clarity the symbol for the litre, which is usually abbreviated to the lower case letter ‘l’, has been substituted by the North American convention of using the capital letter ‘L’; thus ‘ml’ becomes ‘mL’ and ‘dl’ becomes ‘dL’.

Compound units in clinical practice commonly use the forward slash ‘/’ as the delimiter to denote a denominator unit. For example, ‘millilitres per kilogram’ would be written ‘mL/kg’. In compound units with only two components, this usage is not subject to misunderstanding, but in those with more than two components, the use of the forward slash is potentially confusing and should be avoided. The convention in this book, therefore, is to use the more correct scientific notation. In this form, the relationship between units is indicated by the superscript power notation, as shown in Table 3.