Ticks

Widespread and increasing resistance to most available acaracides threatens both global livestock industries and public health. This necessitates better understanding of ticks and the diseases they transmit in the development of new control strategies. *Ticks: Biology, Disease and Control* is written by an international collection of experts and covers in-depth information on aspects of the biology of the ticks themselves, various veterinary and medical tick-borne pathogens, and aspects of traditional and potential new control methods. A valuable resource for graduate students, academic researchers and professionals, the book covers the whole gamut of ticks and tick-borne diseases from microsatellites to satellite imagery and from exploiting tick saliva for therapeutic drugs to developing drugs to control tick populations. It encompasses the variety of interconnected fields impinging on the economically important and biologically fascinating phenomenon of ticks, the diseases they transmit and methods of their control.

Alan Bowman has worked at the Universities of Edinburgh, Oxford and Oklahoma State and is now at the University of Aberdeen. His research interests include tick physiology, bioactive factors in tick saliva, drug target development and ecological aspects of borreliosis. Funding for his tick research has come from national funding bodies and both large animal-health and small biotechnology companies for which he also acts as a consultant.

Pat Nuttall is Director of the Centre for Ecology and Hydrology (CEH), the UK’s centre of excellence for integrated research in land-based and freshwater environmental sciences, and part of the Natural Environment Research Council (NERC). She is Professor of Virology at the University of Oxford and a Fellow of Wolfson College, Oxford. She was awarded the Ivanovsky Medal for Virology in 1996 by the Russian Academy of Sciences, and the Order of the British Empire by the Queen in 2000 for services to environmental sciences.
Ticks

Biology, Disease and Control

Edited by
ALAN S. BOWMAN
University of Aberdeen

PATRICIA A. NUTTALL
Centre for Ecology and Hydrology, Wallingford
Contents

List of contributors vii
Preface xi

1 Systematics and evolution of ticks with a list of valid genus and species names 1
S. C. BARKER AND A. MURRELL

2 The impact of tick ecology on pathogen transmission dynamics 40
S. E. RANDOLPH

3 Tick salivary glands: the physiology of tick water balance and their role in pathogen trafficking and transmission 73
A. S. BOWMAN, A. BALL AND J. R. SAUER

4 Tick saliva: from pharmacology and biochemistry to transcriptome analysis and functional genomics 92
J. M. ANDERSON AND J. G. VALENZUELA

5 Tick toxins: perspectives on paralysis and other forms of toxicoses caused by ticks 108
B. J. MANS, R. GOTHE AND A. W. H. NEITZ

6 Tick lectins and fibrinogen-related proteins 127
L. GRUBHOFFER, R. O. M. REGO, O. HAJDUSEK, V. HYPŠA, V. KOVÁŘ, N. RUDENKO AND J. H. OLIVER JR.

7 Endocrinology of tick development and reproduction 143
H. H. REES

8 Factors that determine sperm precedence in ticks, spiders and insects: a comparative study 164
W. R. KAUFMAN

9 Tick immunobiology 186
M. BROSSARD AND S. K. WIKEL
<table>
<thead>
<tr>
<th></th>
<th>vi Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Saliva-assisted transmission of tick-borne pathogens</td>
</tr>
<tr>
<td></td>
<td>P. A. NUTTALL AND M. LABUDA</td>
</tr>
<tr>
<td>11</td>
<td>Lyme borreliosis in Europe and North America</td>
</tr>
<tr>
<td></td>
<td>J. PIESMAN AND L. GERN</td>
</tr>
<tr>
<td>12</td>
<td>Viruses transmitted by ticks</td>
</tr>
<tr>
<td></td>
<td>M. LABUDA AND P. A. NUTTALL</td>
</tr>
<tr>
<td>13</td>
<td>Babesiosis of cattle</td>
</tr>
<tr>
<td>14</td>
<td>Theileria: life cycle stages associated with the ixodid tick vector</td>
</tr>
<tr>
<td></td>
<td>R. BISHOP, A. MUSOLKE, R. SKILTON, S. MORZARIA, M. GARDNER AND V. NENE</td>
</tr>
<tr>
<td>15</td>
<td>Characterization of the tick–pathogen–host interface of the tick-borne</td>
</tr>
<tr>
<td></td>
<td>rickettsia Anaplasma marginale</td>
</tr>
<tr>
<td></td>
<td>K. M. KOCAN, J. DE LA FUENTE AND E. F. BLOUIN</td>
</tr>
<tr>
<td>16</td>
<td>Emerging and emergent tick-borne infections</td>
</tr>
<tr>
<td></td>
<td>S. R. TELFORD III AND H. K. GOETHERT</td>
</tr>
<tr>
<td>17</td>
<td>Analysing and predicting the occurrence of ticks and tick-borne diseases</td>
</tr>
<tr>
<td></td>
<td>using GIS</td>
</tr>
<tr>
<td></td>
<td>M. DANIEL, J. KOLÁŘ AND P. ZEMAN</td>
</tr>
<tr>
<td>18</td>
<td>Acaricides for controlling ticks on cattle and the problem of acaricide</td>
</tr>
<tr>
<td></td>
<td>resistance</td>
</tr>
<tr>
<td></td>
<td>J. E. GEORGE, J. M. POUND AND R. B. DAVEY</td>
</tr>
<tr>
<td>19</td>
<td>Anti-tick vaccines</td>
</tr>
<tr>
<td></td>
<td>P. WILLADSSEN</td>
</tr>
<tr>
<td>20</td>
<td>Anti-tick biological control agents: assessment and future perspectives</td>
</tr>
<tr>
<td></td>
<td>M. SAMESH, H. GINSBERG AND I. GLAZER</td>
</tr>
<tr>
<td>21</td>
<td>Pheromones and other semiochemicals of ticks and their use in tick control</td>
</tr>
<tr>
<td></td>
<td>D. E. SONENSHINE</td>
</tr>
<tr>
<td>22</td>
<td>Index</td>
</tr>
</tbody>
</table>

© in this web service Cambridge University Press
Contributors

JENNIFER M. ANDERSON
Vector Molecular Biology Unit
Laboratory of Malaria and Vector Research NIAID
National Institute of Health
12735 Twinbrook Parkway
Room 2E-22
Rockville MD 20852 USA

ANDREW BALL
School of Biological Sciences
University of Aberdeen
Tillydrone Avenue
Aberdeen AB24 2TZ UK

STEPHEN C. BARKER
Parasitology Section
School of Molecular and Microbial Sciences
University of Queensland
Brisbane Qld 4072 Australia

RICHARD BISHOP
International Livestock Research Institute (ILRI)
P.O. Box 30709
Nairobi 00100 Kenya

EDMOUR F. BLOUIN
Department of Veterinary Pathobiology
250 McElroy Hall
Center for Veterinary Health Sciences
Oklahoma State University
Stillwater OK 74078 USA

RUSSELL E. BOCK
Tick Fever Centre
Biosecurity Queensland
Queensland Department of Primary Industries
and Fisheries
280 Grindle Road
Wacol Qld 4076 Australia
viii List of contributors

ALAN S. BOWMAN
School of Biological Sciences
University of Aberdeen
Tillydrone Avenue
Aberdeen AB24 2TZ UK

MICHIEL BROSSARD
Laboratory of Parasite Immunology
11 rue Emile Argand
CH-2007 Neuchâtel Switzerland

MILAN DANIEL
School of Public Health
Institute for Postgraduate Medical Education
100 05 Prague 10
Ruska 85 Czech Republic

RONALD B. DAVEY
Cattle Fever Tick Research Laboratory
USDA, ARS
Moore Air Base, Bldg. 6419
22675 N. Moorefield Road
Edinberg TX 78541 USA

JOSE DE LA FUENTE
Department of Veterinary Pathobiology
250 McElroy Hall
Center for Veterinary Health Sciences
Oklahoma State University
Stillwater OK 74078 USA

J. DE LA FUENTE
Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM–JCCM)
Rhonda de Toledo s/n 13005
Ciudad Real
Spain

ALBERTUS J. DE VOS
Tick Fever Centre
Biosecurity Queensland
Queensland Department of Primary Industries and Fisheries
280 Grindle Road
Wacol Qld 4076 Australia

MALCOLM J. GARDNER
Seattle Biomedical Research Institute
307 Westlake Ave. N. Suite 500
Seattle WA 98109 USA

JOHN E. GEORGE
Knipling–Bushland US Livestock Insects Research Laboratory
USDA, ARS
2700 Fredericksburg Road
Kerrville TX 78028 USA

LISE GERN
Institut de Biologie
Emile-Armand 11
CH-2009 Neuchâtel Switzerland

HOWARD S. GINSBERG
Paxton Wildlife Research Centre
US Geological Survey
University of Rhode Island
Woodward Hall–PLS
Kingston RI 02881 USA

ITAMAR GLAIZER
Entomology and Nematology
ARO
The Volcani Centre
Bet Dagan
P.O. Box 6
Israel 50250

HEIDI K. GOETHERT
Division of Infectious Diseases
Cummings School of Veterinary Medicine
Tufts University
200 Westboro Road
North Grafton MA 01536 USA

R. GOTE
Department of Biochemistry
University of Pretoria
Pretoria 0002 South Africa

LIBOR GRUBHOFFER
Biological Centre of the Academy of Sciences of the Czech Republic
Institute of Parasitology
Branisovska 31
370 05 Ceske Budejovice Czech Republic

ONDREJ HAJDUSEK
Faculty of Biological Sciences
University of South Bohemia
Branisovska 31
370 05 Ceske Budejovice Czech Republic
List of contributors

VACLAV HYPA
Faculty of Biological Sciences
University of South Bohemia
Branisovska 31
370 05 Ceske Budejovice Czech Republic

LOUISE A. JACKSON
Animal Research Institute
Biosecurity Queensland
Department of Primary Industries and Fisheries
Locked Mail Bag No. 4
Moorooka Qld 4105 Australia

WAYNE K. JORGENSEN
Animal Research Institute
Department of Primary Industries and Fisheries
Locked Mail Bag No. 4
Moorooka Qld 4105 Australia

W. REUBEN KAUFMAN
Z 606, Department of Biological Sciences
University of Alberta
Edmonton, Alberta T6G 2E9 Canada

KATHERINE M. KOCAN
Department of Veterinary Pathobiology
230 McElroy Hall
Center for Veterinary Health Sciences
Oklahoma State University
Stillwater OK 74078 USA

JAN KOLAR
Department of Applied Geoinformatics
Faculty of Sciences
Charles University
128 43 Prague 2
Albertov 6 Czech Republic

VOJTECH KOVAR
Biology Centre of the Academy of Sciences of the Czech Republic
Institute of Parasitology
Branisovska 31
370 05 Ceske Budejovice Czech Republic

MILAN LABUDA
Institute of Zoology
Slovak Academy of Sciences
Dubravska cesta 9
845 06 Bratislava Slovakia

BEN J. MANS
Old Main Building, Rm 53
Parasites, Vectors and Vector-Borne Diseases
Onderstepoort Veterinary Institute
Agricultural Research Council
Onderstepoort
0110
South Africa

SUBHASH P. MORZARIA
Food and Agriculture Organization (FAO)
39 Phra Atit Road
Bangkok 10200 Thailand

ANNA MURRELL
Parasitology Section
School of Molecular and Microbial Sciences
University of Queensland
Brisbane Qld 4072 Australia

ANTONY J. MUSOKE
Onderstepoort Veterinary Institute
Private Bag X5
Onderstepoort 0110 South Africa

VISHVANATH NENE
The Institute for Genomic Research (TIGR)
9712 Medical Center Drive
Rockville MD 20850 USA

ALBERT W. H. NEITZ
Department of Biochemistry
University of Pretoria
Pretoria 0002 South Africa

PATRICIA A. NUTTALL
Centre for Ecology and Hydrology
Maclean Building
Crownmarsh Gifford
Wallingford OX10 8BB UK

JAMES H. OLIVER JR
Georgia Southern University
Institute of Arthropodology and Parasitology
P.O. Box 8056
Statesboro GA 30460 USA

JOSEPH F. PIESMAN
CDC/DYBID
3150 Rampart Road
Fort Collins CO 80521 USA
List of contributors

MATHIEWS POUND
Knipping–Bushland US Livestock Insects Research Laboratory
USDA, ARS
2700 Fredericksburg Road
Kerrville TX 78028 USA

SARAH E. RANDOLPH
Department of Zoology
University of Oxford
Tinbergen Building
South Parks Road
Oxford OX1 3PS UK

HUW H. REES
School of Biological Sciences
University of Liverpool
The Biosciences Building
Crown Street
Liverpool L69 7ZB UK

RYAN O. M. REGO
Laboratory of Zoonotic Pathogens
Rocky Mountain Laboratories
NIAID
NIH
903 South 4th Street
Hamilton MT 59840 USA

NATALIA RUDENKO
Biological Centre of the Academy of Sciences of the Czech Republic
Institute of Parasitology
Bransovska 31
370 05 Ceske Budejovice Czech Republic

MICHAEL SAMISH
Division of Parasitology
Kimron Veterinary Institute
Bet Dagan
P.O. Box 12
Israel 50250

JOHN SAUER
Department of Entomology and Plant Pathology
127 Noble Research Center
Oklahoma State University
Stillwater OK 74078 USA

ROBERT A. SKILTON
International Livestock Research Institute (ILRI)
P.O. Box 30709
Nairobi 00100 Kenya

DANIEL E. SONENSHINE
Department of Biological Sciences
45th Street and Elkhorn Avenue
Old Dominion University
Norfolk VA 2329 USA

SAM R. TELFORD
Division of Infectious Diseases
Cummings School of Veterinary Medicine
Tufts University
200 Westboro Road
North Grafton MA 01536 USA

JESUS G. VALENZUELA
Vector Molecular Biology Unit
Laboratory of Malaria and Vector Research
NIAID
National Institutes of Health
12735 Twinbrook Parkway
Room 2E-22
Rockville MD 20852 USA

STEPHEN K. WIKEL
Department of Immunology
School of Medicine
University of Connecticut Health Center
263 Farmington Avenue, MC3710
Farmington CT 06030 USA

PETER WILLADSSEN
CSIRO Livestock Industries
Queensland Biodiversity Precinct
306 Carmody Road
St Lucia Qld 4067 Australia

PETR ZEMAN
State Veterinary Institute
165 03 Prague 6
Sidlistni 136/24 Czech Republic
Preface

Tick statistics are impressive. Some 907 tick species have been named. Their only food is blood, of which some ticks consume relatively vast quantities (several hundred times their unfed body weight). Some take 2 weeks or more to feed. Often they only feed three times during the whole of their life cycle (which may take 7 years to complete). They feed on mammals (including humans), birds and reptiles. Their geographical distribution ranges from sub-arctic through equatorial to antarctic regions, and habitats range from desert to rainforest. They even survive submersion in seawater as they feed on seabirds diving for fish. But the most important tick statistics concern their ability to transmit pathogens (disease-causing agents). And our greatest challenge is to devise efficient and effective means of controlling ticks and tick-borne pathogens.

Ticks transmit a great variety of disease-causing agents to humans (viral, bacterial and protozoal), including bacteria that cause Lyme disease, the reports of which increase in number year on year. About 80% of the world’s cattle are infested with ticks. As a result, ticks are the most economically important ectoparasite of livestock. The impact of ticks on livestock producers in the developing world is a contributing factor to poverty.

In this book we have brought together experts from the tick world to express their views on the key advances in tick biology, diseases and control. Tick systematics and evolution highlight fundamental changes in our understanding, particularly for hard (ixodid) ticks, their life cycles and historical zoogeography (Barker & Murrell). While the ecology of ticks is a fundamental influence in pathogen transmission dynamics (Randolph), tick salivary glands perform a key function in survival (water balance) and pathogen transmission (Bowman, Ball & Sauer). For good reason, ticks have been called ‘supreme pharmacologists’, manipulating their hosts’ attempts to get rid of them by secreting hundreds of antihaemostatic, anti-inflammatory, anaesthetic and immunomodulatory molecules in their saliva. Not surprisingly, the ‘sialome’ has become the frontier in understanding the role of tick saliva in blood-feeding and pathogen
transmission (Anderson & Valenzuela). Saliva also contains
toxins, a non-infectious cause of disease, though we know
little of their functional significance (Mans, Gothe & Neitz).
Besides saliva production, blood-feeding also enhances tick
lectin activities, which play a role in defence reactions and
pathogen transmission (Grubhoffer et al.), and triggers the
endocrine system about which comparatively little is known
(Rees). Similarly, the mechanisms used by male ticks to
assure their paternity are largely virgin territory (Kaufman).

One of the reasons why ticks transmit so many pathogens
is found in the dynamic interactions that occur at the tick–
host–pathogen interface (Brossard & Wikel) where saliva
assists pathogen transmission (Nuttall & Labuda). Because
ticks transmit such a diversity of pathogens, we have had
to be selective. For humans, the most common tick-borne
infection is Lyme borreliosis (Piesman & Gern) though sev-
eral tick-borne viruses cause human disease and even death
(Labuda & Nuttall). More common are diseases of live-
stock, including babesiosis, the most economically impor-
tant arthropod-borne disease of cattle (Bock et al.), theile-
riosis, a particular problem in developing countries (Bishop
et al.), and anaplasmosis, caused by *Anaplasma marginale*,
a bacterium (rickettsia) (Kocan, de la Fuente & Blouin).

Few ‘emerging’ tick-borne infections are new to science
(Telford & Goethert).

Controlling ticks and tick-borne pathogens requires new
approaches, such as satellite-based remote sensing for land-
scape epidemiology to identify spatial and temporal dis-
tribution (Daniel, Kolář & Zeman). But the mainstay of
tick and disease control remains acaricide use, despite the
alarming problem of acaricide resistance (George, Pound &
Davey). Although a commercial tick vaccine became avail-
able in 1994, progress in developing new and improved
vaccines is slow (Willadsen). Development of biological
agents to control ticks is still in its infancy (Samish, Gins-
berg & Glazer), as is the use of pheromones and other
semiochemicals (Sonenshine) although some show great
promise.

This book follows on from the *Parasitology* Supplement,
Ticks: Biology, Disease and Control, published in 2004. As
a result of interest in the Supplement and requests from
workers in the field, we went back to the authors and asked
if they would update and revise their contributions. Where
the book chapter has replaced valuable information in the
Supplement, the appropriate Supplement reference has been
cited. We hope this book inspires your interest in the remark-
able world of ticks.

ALAN S. BOWMAN and PATRICIA A. NUTTALL
June 2008