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Basic Concepts

In this chapter we introduce the basic terminology of probability theory. The

notions of independence, distribution, and expected value are studied in more

detail later, but it is hard to discuss examples without them, so we introduce

them quickly here.

1.1 Outcomes, events, and probability

The subject of probability can be traced back to the 17th century when it arose

out of the study of gambling games. As we see, the range of applications extends

beyond games into business decisions, insurance, law, medical tests, and the

social sciences. The stock market, “the largest casino in the world,” cannot do

without it. The telephone network, call centers, and airline companies with their

randomly fluctuating loads could not have been economically designed without

probability theory. To quote Pierre-Simon, marquis de Laplace from several

hundred years ago:

It is remarkable that this science, which originated in the consideration

of games of chance, should become the most important object of human

knowledge . . . The most important questions of life are, for the most part,

really only problems of probability.

In order to address these applications, we need to develop a language for

discussing them. Euclidean geometry begins with the notions of point and line.

The corresponding basic object of probability is an experiment: an activity

or procedure that produces distinct, well-defined possibilities called outcomes.

(Here and throughout the book boldface type indicates a term that is being

defined.)

Example 1.1 If our experiment is to roll one die then there are 6 outcomes corresponding

to the number that shows on the top. The set of all outcomes in this case

is {1, 2, 3, 4, 5, 6}. It is called the sample space and is usually denoted by �.
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2 Basic Concepts

Symmetry dictates that all outcomes are equally likely, so each has probability

1/6.

Example 1.2 Things get a little more interesting when we roll two dice. If we suppose, for

convenience, that they are red and green then we can write the outcomes of this

experiment as (m, n), where m is the number on the red die and n is the number

on the green die. To visualize the set of outcomes it is useful to make a small

table:

(1, 1) (2, 1) (3, 1) (4, 1) (5, 1) (6, 1)

(1, 2) (2, 2) (3, 2) (4, 2) (5, 2) (6, 2)

(1, 3) (2, 3) (3, 3) (4, 3) (5, 3) (6, 3)

(1, 4) (2, 4) (3, 4) (4, 4) (5, 4) (6, 4)

(1, 5) (2, 5) (3, 5) (4, 5) (5, 5) (6, 5)

(1, 6) (2, 6) (3, 6) (4, 6) (5, 6) (6, 6)

There are 36 = 6 · 6 outcomes since there are 6 possible numbers to write in the

first slot and for each number written in the first slot there are 6 possibilities for

the second.

The goal of probability theory is to compute the probability of various

events of interest. Intuitively, an event is a statement about the outcome of

an experiment. The formal definition is: An event is a subset of the sam-

ple space. For example, “the sum of the two dice is 8” translates into the set

A = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}. Since this event contains 5 of the 36

possible outcomes its probability P (A) = 5/36.

For a second example, consider B = “there is at least one 6.” B consists of the

last row and last column of the table, so it contains 11 outcomes and hence has

probability P (B) = 11/36. In general, the probability of an event C concerning

the roll of two dice is the number of outcomes in C divided by 36.

1.1.1 Axioms of probability theory

Let ∅ be the empty set, that is, the event with no outcomes. We assume that the

reader is familiar with the basic concepts of set theory such as union (A ∪ B ,

the outcomes in either A or B) and intersection (A ∩ B , the outcomes in both

A and B).

Abstractly, a probability is a function that assigns numbers to events, which

satisfies the following assumptions:

(i) For any event A, 0 ≤ P (A) ≤ 1.

(ii) If � is the sample space then P (�) = 1.
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3 1.1 Outcomes, events, and probability

(iii) If A and B are disjoint, that is, the intersection A ∩ B = ∅, then

P (A ∪ B) = P (A) + P (B)

(iv) If A1, A2, . . . , is an infinite sequence of pairwise disjoint events (that is,

Ai ∩ A j = ∅ when i �= j ) then

P

(

∞
⋃

i=1

Ai

)

=

∞
∑

i=1

P (Ai )

These assumptions are motivated by the frequency interpretation of probabil-

ity, which states that if we repeat an experiment a large number of times then

the fraction of times the event A occurs will be close to P (A). To be precise, if

we let N(A, n) be the number of times A occurs in the first n trials then

P (A) = lim
n→∞

N(A, n)

n
(1.1)

In Chapter 6, we see that this result is a theorem called the law of large

numbers. For the moment, we use this interpretation of P (A) to explain the

definition.

Given (1.1), assumptions (i) and (ii) are clear: the fraction of times a given

event A occurs must be between 0 and 1, and if � has been defined properly

(recall that it is the set of ALL possible outcomes) then the fraction of times

something in � happens is 1. To explain (iii), note that if the events A and B

are disjoint then

N(A ∪ B , n) = N(A, n) + N(B , n)

since A ∪ B occurs if either A or B occurs but it is impossible for both to

happen. Dividing by n and letting n → ∞, we arrive at (iii).

Assumption (iii) implies that (iv) holds for a finite number of events, but

for infinitely many events the last argument breaks down and this is a new

assumption. Not everyone believes that Assumption (iv) should be used. How-

ever, without (iv) the theory of probability becomes much more difficult and

less useful, so we impose this assumption and do not apologize further for it. In

many cases the sample space is finite, so (iv) is not relevant anyway.

Example 1.3 Suppose we pick a letter at random from the word TENNESSEE. What is the

sample space � and what probabilities should be assigned to the outcomes?

The sample space � = {T, E , N, S}. To describe the probability it is enough

to give the values for the individual outcomes since (iii) implies that P (A) is

the sum of the probabilities of the outcomes in A. Since there are nine letters

in TENNESSEE, the probabilities are P ({T}) = 1/9, P ({E }) = 4/9, P ({N}) =

2/9, and P ({S}) = 2/9.
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4 Basic Concepts

1.1.2 Basic properties of P(A)

Having introduced a number of definitions, we now derive some basic properties

of probabilities and illustrate their use.

Property 1. Let Ac be the complement of A, that is, the set of outcomes not in A.

Then

P (A) = 1 − P (Ac ) (1.2)

Proof. Let A1 = A and A2 = Ac . Then A1 ∩ A2 = ∅ and A1 ∪ A2 = �, so (iii)

implies P (A) + P (Ac ) = P (�) = 1 by (ii). Subtracting P (A) from each side

of the equation gives the result.

This formula is useful because sometimes it is easier to compute the prob-

ability of Ac . For an example, consider A = “at least one 6.” In this case

Ac = “no 6.” There are 5 · 5 outcomes with no 6, so P (Ac ) = 25/36 and

P (A) = 1 − 25/36 = 11/36, as we computed before.

Property 2. For any events A and B,

P (A ∪ B) = P (A) + P (B) − P (A ∩ B) (1.3)

Proof by picture:

�
�

�
�

�
�

�
�

�
�

�
�

P (A)

P (B)

−P (A ∩ B)

+ +

+ +

−

A

B

Intuitively, P (A) + P (B) counts A ∩ B twice, so we have to subtract

P (A ∩ B) to make the net number of times A ∩ B is counted equal to 1.

Proof. To prove this result we note that by assumption (ii)

P (A) = P (A ∩ B) + P (A ∩ B c )

P (B) = P (B ∩ A) + P (B ∩ Ac )
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5 1.1 Outcomes, events, and probability

Adding the two equations and subtracting P (A ∩ B),

P (A) + P (B) − P (A ∩ B) = P (A ∩ B) + P (A ∩ B c )

+ P (B ∩ Ac ) = P (A ∪ B)

which gives the desired equality.

To illustrate Property 2, let A = “the red die shows 6,” and B = “the green

die shows 6.” In this case A ∪ B = “at least one 6” and A ∩ B = {(6, 6)}, so we

have

P (A ∪ B) = P (A) + P (B) − P (A ∩ B) =
1

6
+

1

6
−

1

36
=

11

36

The same principle applies to counting outcomes in events.

Example 1.4 A survey of 1,000 students revealed that 750 owned stereos, 450 owned cars, and

350 owned both. How many own either a car or a stereo?

Given a set A, we use |A| to denote the number of points in A. The reasoning

that led to (1.3) tells us that

|S ∪ C | = |S| + |C | − |S ∩ C | = 750 + 450 − 350 = 850

We can confirm this by drawing a picture:

400 350 100

S

C

Property 3 (Monotonicity). If A ⊂ B, that is, any outcome in A is also in B,

then

P (A) ≤ P (B) (1.4)

Proof. A and Ac ∩ B are disjoint, with union B , so assumption (iii) implies

P (B) = P (A) + P (Ac ∩ B) ≥ P (A) by (i).

We write An ↑ A if A1 ⊂ A2 ⊂ · · · and ∪∞
i=1 Ai = A. We write An ↓ A if

A1 ⊃ A2 ⊃ · · · and ∩∞
i=1 Ai = A.
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6 Basic Concepts

Property 4 (Monotone limits). If An ↑ A or An ↓ A then

lim
n→∞

P (An) = P (A) (1.5)

Proof. Let B1 = A1, and for i ≥ 2 let Bi = Ai ∩ Ac
i−1. The events Bi are disjoint,

with ∪∞
i=1 Bi = A, so (iv) implies

P (A) =

∞
∑

i=1

P (Bi ) = lim
n→∞

n
∑

i=1

P (Bi ) = lim
n→∞

P (An)

by (iii) since Bi , 1 ≤ i ≤ n, are disjoint and their union is An.

To prove the second result, let Bi = Ac
i . We have Bn ↑ Ac so by (1.5) and

(1.2), limn→∞ P (Bn) = 1 − P (A). Since P (Bn) = 1 − P (An), the desired re-

sult follows.

1.2 Flipping coins and the World Series

Even simpler than rolling a die is flipping a coin, which produces one of two

outcomes, called “heads” (H) or “tails” (T). If we flip two coins there are 4

outcomes:

HT

HH TH TT

Heads 2 1 0

Probability 1/4 1/2 1/4

Flipping three coins there are 8 possibilities:

HHT TTH

HHH HTH THT TTT

THH HTT

Heads 3 2 1 0

Probability 1/8 3/8 3/8 1/8

Our next problem concerns flipping four to seven coins.

Example 1.5 World Series. In this baseball event, the first team to win four games wins the

championship. Obviously, the series may last 4, 5, 6, or 7 games. However, a fan

who wants to buy a ticket would like to know what are the probabilities of each

of these outcomes.

Here, we are assuming that the two teams are equally matched and ignoring

potential complicating factors such as the advantage of playing at home or
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7 1.2 Flipping coins and the World Series

psychological factors that make the outcome of one game affect the next one. In

short, we suppose that the games are decided by tossing a fair coin to determine

whether team A or team B wins.

Four games. There are two possible ways this can happen: A wins all four games

or B wins all four games. There are 2 · 2 · 2 · 2 = 16 possible outcomes and these

are 2 of them, so P (4) = 2/16 = 1/8.

Five games. Here and in the next case we compute the probability that A wins

in the specified number of games and then multiply by 2. There are 4 possible

outcomes:

B AAAA, AB AAA, AAB AA, AAAB A

AAAAB is not possible since in that case the series would have ended in four

games. There are 25 = 32 outcomes, so P (5) = 2 · 4/32 = 1/4.

Six games. In the next section we learn systematic ways of doing this, but for

now we compute the probabilities by enumerating the possibilities:

B B AAAA AB B AAA AAB B AA AAAB B A

B AB AAA AB AB AA AAB AB A

B AAB AA AB AAB A

B AAAB A

The first column corresponds to outcomes in which B wins the first game,

the second one to outcomes in which the first game B wins is the second game,

etc. We then move the remaining win for B through its possibilities. There are

10 outcomes out of 26 = 64 total, so remembering to multiply by 2 to account

for the ways B can win in six games, P (6) = 2 · 10/64 = 5/16.

Seven games. The analysis from the previous case becomes even messier here,

so we instead observe that the probabilities for the four possible outcomes must

add up to 1, so

P (7) = 1 − P (4) − P (5) − P (6) = 1 −
2

16
−

4

16
−

5

16
=

5

16

As mentioned earlier, we are ignoring things that many fans think are impor-

tant in determining the outcomes of the games, so our next step is to compare

the probabilities just calculated with the observed frequencies of the duration

of best-of-seven series in three sports. The numbers in parentheses give the

number of series in our sample.
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8 Basic Concepts

Games 4 5 6 7

Probabilities 0.125 0.25 0.3125 0.3125

World Series (94) 0.181 0.224 0.224 0.372

Stanley Cup (74) 0.270 0.216 0.230 0.284

NBA finals (57) 0.122 0.228 0.386 0.263

To determine whether or not the data agree with predictions, statisticians use

a chi-squared statistic:

χ2 =
∑ (oi − ei )

2

ei

where oi is the number of observations in category i and ei is what the model

predicts. The details of the test are beyond the scope of this book, so we just

quote the results: the Stanley Cup data are very unusual (the probability of a

chi-square score this large or larger has probability p < 0.01) due to the larger-

than-expected number of four-game series. The World Series data do not fit the

model well, but are not very unusual (p > 0.05). On the other hand, the NBA

finals data look like what we expect to see. The excess of six-game series can be

due just to chance.

Example 1.6 Birthday problem. There are 30 people at a party. Someone wants to bet you

$10 that there are 2 people with exactly the same birthday. Should you take the

bet?

To pose a mathematical problem we ignore February 29 which only comes in

leap years, and suppose that each person at the party picks their birthday at ran-

dom from the calendar. There are 36530 possible outcomes for this experiment.

The number of outcomes in which all the birthdays are different is

365 · 364 · 363 · · · · · 336

since the second person must avoid the first person’s birthday, the third the first

two birthdays, and so on, until the 30th person must avoid the 29 previous

birthdays. Let D be the event that all birthdays are different. Dividing the

number of outcomes in which all the birthdays are different by the total number

of outcomes, we have

P (D) =
365 · 364 · 363 · · · · · 336

36530
= 0.293684

In words, only about 29% of the time all the birthdays are different, so you

will lose the bet 71% of the time.
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9 1.3 Independence

At first glance it is surprising that the probability of 2 people having the same

birthday is so large, since there are only 30 people compared with 365 days

on the calendar. Some of the surprise disappears if you realize that there are

(30 · 29)/2 = 435 pairs of people who are going to compare their birthdays. Let

pk be the probability that k people all have different birthdays. Clearly, p1 = 1

and pk+1 = pk(365 − k)/365. Using this recursion it is easy to generate the

values of pk for 1 ≤ k ≤ 40.

0 10 20 30 40 50 60

0.2

0.4

0.6

0.8

1

The graph shows the trends, but to get precise values a table is better:

1 1.00000 11 0.85886 21 0.55631 31 0.26955

2 0.99726 12 0.83298 22 0.52430 32 0.24665

3 0.99180 13 0.80559 23 0.49270 33 0.22503

4 0.98364 14 0.77690 24 0.46166 34 0.20468

5 0.97286 15 0.74710 25 0.43130 35 0.18562

6 0.95954 16 0.71640 26 0.40176 36 0.16782

7 0.94376 17 0.68499 27 0.37314 37 0.15127

8 0.92566 18 0.65309 28 0.34554 38 0.13593

9 0.90538 19 0.62088 29 0.31903 39 0.12178

10 0.88305 20 0.58856 30 0.29368 40 0.10877

1.3 Independence

Intuitively, two events A and B are independent if the occurrence of A has no

influence on the probability of occurrence of B . The formal definition is A and

B are independent if

P (A ∩ B) = P (A)P (B)
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10 Basic Concepts

To make the connection between the two definitions, we need to introduce

the notion of conditional probability, which is discussed in more detail in

Chapter 3.

Suppose we are told that the event A with P (A) > 0 occurs. Then the sample

space is reduced from � to A and the probability that B will occur given that A

has occurred is

P (B |A) =
P (B ∩ A)

P (A)
(1.6)

To explain this formula, note that (i) only the part of B that lies in A can

possibly occur and (ii) since the sample space is now A, we have to divide by

P (A) to make P (A|A) = 1.

������������

A

B

B ∩ A

Ac

Suppose A and B are independent. In this case P (A ∩ B) = P (A)P (B), so

P (B |A) =
P (A)P (B)

P (A)
= P (B)

or in the words of the intuitive definition of independence, “the occurrence of

A has no influence on the probability of the occurrence of B .”

Turning to concrete examples, in each case it should be clear that the intuitive

definition is satisfied, so we only check the formal one.

� Flip two coins. Let A = “the first coin shows heads” and B = “the second coin

shows heads.” P (A) = 1/2, P (B) = 1/2, P (A ∩ B) = 1/4.
� Roll two dice. Let A = “the first die shows 5” and B = “the second die shows 2.”

P (A) = 1/6, P (B) = 1/6, P (A ∩ B) = 1/36.
� Pick a card from a standard deck of 52 cards. Let A = “the card is an ace” and

B = “the card is a spade” P (A) = 1/13, P (B) = 1/4, P (A ∩ B) = 1/52.

Two examples of events that are not independent are

Example 1.7 Draw two cards from a deck. Let A = “the first card is a spade” and B = “the

second card is a spade.” Then P (A) = 1/4 and P (B) = 1/4, but

P (A ∩ B) =
13 · 12

52 · 51
<

(

1

4

)2
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