
CONCURRENT AND REAL-TIME
PROGRAMMING IN ADA

Ada is the only ISO standard, object-oriented, concurrent, real-time programming language. It
is intended for use in large, long-lived applications where reliability and efficiency are essen-
tial, particularly real-time and embedded systems. In this book, Alan Burns and Andy Wellings
give a thorough, self-contained account of how the Ada tasking model can be used to con-
struct a wide range of concurrent and real-time systems. This is the only book that focuses on
an in-depth discussion of the Ada tasking model. Following on from the authors’ earlier title
‘Concurrency in Ada’, this book brings the discussion up to date to include the new Ada 2005
language and the recent advances in real-time programming techniques. It will be of value to
software professionals and advanced students of programming alike; indeed, every Ada pro-
grammer will find it essential reading and a primary reference work that will sit alongside the
language reference manual.

ALAN BURNS is a Professor in Computer Science at the University of York. His research ac-
tivities have covered a number of aspects of real-time and safety critical systems, including the
assessment of languages for use in the real-time safety critical domain, distributed operating
systems, the formal specification of scheduling algorithms and implementation strategies, and
the design of dependable user interfaces to safety critical applications. His teaching activities
include courses in Operating Systems, Scheduling and Real-time Systems. He has authored
over 370 papers and reports and 8 books, including ‘Real-time Systems and Programming Lan-
guages’ (3rd Edition), ‘Concurrency in Ada’ (2nd Edition) and ‘Concurrent and Real-Time
Programming in Java’.

ANDY WELLINGS is a Professor of Real-Time Systems in the Computer Science Department
at the University of York. He is interested in most aspects of the design and implementa-
tion of real-time dependable computer systems and, in particular, in real-time programming
languages and operating systems. He is European Editor-in-Chief for the Computer Science
journal ‘Software-Practice and Experience’ and a member of the International Expert Groups
currently developing extensions to the Java platform for real-time, safety critical and distributed
programming. He has authored over 280 papers and several books, including ‘Real-time Sys-
tems and Programming Languages’ (3rd edition) and ‘Concurrency in Ada’ (2nd edition).

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86697-2 - Concurrent and Real-Time Programming in Ada 2005
Alan Burns and Andy Wellings
Frontmatter
More information

http://www.cambridge.org/0521866979
http://www.cambridge.org
http://www.cambridge.org


CONCURRENT AND REAL-TIME
PROGRAMMING IN ADA 2005

ALAN BURNS AND ANDY WELLINGS
University of York

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86697-2 - Concurrent and Real-Time Programming in Ada 2005
Alan Burns and Andy Wellings
Frontmatter
More information

http://www.cambridge.org/0521866979
http://www.cambridge.org
http://www.cambridge.org


CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521866972

c© A. Burns and A. Wellings 2007

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2007

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-86697-2 hardback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to

in this publication, and does not guarantee that any content
on such websites is, or will remain, accurate or appropriate.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86697-2 - Concurrent and Real-Time Programming in Ada 2005
Alan Burns and Andy Wellings
Frontmatter
More information

http://www.cambridge.org/0521866979
http://www.cambridge.org
http://www.cambridge.org


Contents

Preface page xi

1 Introduction 1
1.1 Concurrency 2
1.2 Real-time systems 3
1.3 Ada’s time and clock facilities 6
1.4 Summary 13
1.5 Further reading 13

2 The nature and uses of concurrent programming 15
2.1 Uses of concurrent programming 17
2.2 Program entities 18
2.3 Process representation 20
2.4 A simple embedded system 21
2.5 Summary 30
2.6 Further reading 30

3 Inter-process communication 31
3.1 Data communication 32
3.2 Synchronisation 33
3.3 Deadlocks and indefinite postponements 34
3.4 System performance, correctness and reliability 36
3.5 Dining philosophers problem 38
3.6 Shared variables and protected variables 39
3.7 Semaphores 41
3.8 Monitors 44
3.9 Message-based communication 48
3.10 Summary 53
3.11 Further reading 54

v

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86697-2 - Concurrent and Real-Time Programming in Ada 2005
Alan Burns and Andy Wellings
Frontmatter
More information

http://www.cambridge.org/0521866979
http://www.cambridge.org
http://www.cambridge.org


vi Contents

4 Task types and objects 55
4.1 Task creation 57
4.2 Task activation, execution, finalisation and termination 65
4.3 Task hierarchies 70
4.4 Task identification 75
4.5 Task creation, communication and synchronisation within task

finalisation 77
4.6 Summary 77

5 The rendezvous 79
5.1 The basic model 79
5.2 The entry statement 81
5.3 The accept statement 83
5.4 The Count attribute 88
5.5 Entry families 88
5.6 Three-way synchronisation 90
5.7 Private entries 92
5.8 Exceptions and the rendezvous 93
5.9 Task states 94
5.10 Summary 94

6 The select statement and the rendezvous 97
6.1 Selective accept 97
6.2 Guarded alternatives 101
6.3 Delay alternative 103
6.4 The else part 107
6.5 The correct use of guards 109
6.6 The terminate alternative 111
6.7 The exception Program Error 116
6.8 Summary of the selective accept statement 118
6.9 Conditional and timed entry calls 118
6.10 Mutual exclusion and deadlocks 121
6.11 The dining philosophers 124
6.12 Task states 127
6.13 Summary 127

7 Protected objects and data-oriented communication 129
7.1 Protected objects 129
7.2 Mutual exclusion 131
7.3 Condition synchronisation 133
7.4 Entry calls and barriers 135
7.5 Private entries and entry families 139

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86697-2 - Concurrent and Real-Time Programming in Ada 2005
Alan Burns and Andy Wellings
Frontmatter
More information

http://www.cambridge.org/0521866979
http://www.cambridge.org
http://www.cambridge.org


Contents vii

7.6 Restrictions on protected objects 142
7.7 Access variables and protected types 144
7.8 Elaboration, finalisation and exceptions 146
7.9 Shared data 147
7.10 The readers and writers problem 148
7.11 The specification of synchronisation agents 151
7.12 Shared variables 152
7.13 Volatile and atomic data 156
7.14 Task states 160
7.15 Summary 161

8 Avoidance synchronisation and the requeue facility 163
8.1 The need for requeue 163
8.2 Semantics of requeue 175
8.3 Requeuing to other entities 179
8.4 Real-time solutions to the resource control problem 183
8.5 Entry families and server tasks 186
8.6 Extended example 190
8.7 Task states 193
8.8 Summary 194

9 Exceptions, abort and asynchronous transfer of control 195
9.1 Exceptions 195
9.2 The abort statement 198
9.3 Asynchronous transfer of control 200
9.4 Understanding the asynchronous select statement 212
9.5 A robust readers and writers algorithm 217
9.6 Task states 221
9.7 Summary 221

10 Object-oriented programming and tasking 223
10.1 The Ada 2005 OOP model 224
10.2 Tasks and interfaces 231
10.3 Protected types and interfaces 239
10.4 Synchronized interfaces 244
10.5 Summary 246
10.6 Further reading 246

11 Concurrency utilities 247
11.1 Communication and synchronisation abstractions 248
11.2 Semaphores 248
11.3 Locks 257
11.4 Signals 263

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86697-2 - Concurrent and Real-Time Programming in Ada 2005
Alan Burns and Andy Wellings
Frontmatter
More information

http://www.cambridge.org/0521866979
http://www.cambridge.org
http://www.cambridge.org


viii Contents

11.5 Event variables 264
11.6 Buffers 266
11.7 Blackboards 268
11.8 Broadcasts 269
11.9 Barriers 276
11.10 Concurrent execution abstractions 277
11.11 Callables and futures 278
11.12 Executors 280
11.13 Completion services 284
11.14 Image processing example revisited 288
11.15 Summary 291

12 Tasking and systems programming 293
12.1 Device driving and interrupt handling 296
12.2 Model of interrupts 300
12.3 Task identifiers 311
12.4 Task attributes 313
12.5 Summary 316
12.6 Further reading 316

13 Scheduling real-time systems – fixed priority dispatching 317
13.1 Scheduling 317
13.2 Fixed priority dispatching 319
13.3 Priority ceiling locking 322
13.4 Entry queue policies 327
13.5 Active priorities and dispatching policies 327
13.6 Summary 329
13.7 Further reading 329

14 Scheduling real-time systems – other dispatching facilities 331
14.1 Non-preemptive dispatching 331
14.2 Round-robin dispatching 332
14.3 Earliest deadline first dispatching 335
14.4 Mixed scheduling 347
14.5 Dynamic priorities 348
14.6 Synchronous and asynchronous task control 354
14.7 Summary 359
14.8 Further reading 359

15 Timing events and execution-time control 361
15.1 Events and event handling 361
15.2 Timing events 362
15.3 Dual priority scheduling 366

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86697-2 - Concurrent and Real-Time Programming in Ada 2005
Alan Burns and Andy Wellings
Frontmatter
More information

http://www.cambridge.org/0521866979
http://www.cambridge.org
http://www.cambridge.org


Contents ix

15.4 Execution-time clocks 369
15.5 Execution-time timers 371
15.6 Group budgets 374
15.7 Task termination events 387
15.8 Summary 389
15.9 Further reading 389

16 Real-time utilities 391
16.1 Real-time task state 393
16.2 Real-time task release mechanisms 395
16.3 Periodic release mechanisms 397
16.4 Sporadic release mechanisms 405
16.5 Aperiodic release mechanisms and execution-time servers 407
16.6 Real-time tasks 415
16.7 The cruise control system example 419
16.8 Summary 432

17 Restrictions, metrics and the Ravenscar profile 433
17.1 Restricted tasking and other language features 433
17.2 The Ravenscar profile 436
17.3 Partition elaboration control 439
17.4 Examples of the use of the Ravenscar profile 440
17.5 Metrics and optimisations 448
17.6 Summary 449
17.7 Further reading 450

18 Conclusion 451
18.1 Support for concurrency 452
18.2 Support for real-time 452
18.3 New to Ada 2005 453
18.4 Outstanding issues and the future 453

References 455
Index 457

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86697-2 - Concurrent and Real-Time Programming in Ada 2005
Alan Burns and Andy Wellings
Frontmatter
More information

http://www.cambridge.org/0521866979
http://www.cambridge.org
http://www.cambridge.org


Preface

The development of the Ada programming language forms a unique and, at times,
intriguing contribution to the history of computer languages. As all users of Ada
must know, the original language design was a result of competition between a
number of organisations, each of which attempted to give a complete language
definition in response to a series of documented requirements. This gave rise to
Ada 83. Following 10 years of use, Ada was subject to a complete overhaul. The
resulting language, Ada 95, had a number of significant changes from its predeces-
sor. A further 10 years of use has produced another version of Ada, known as Ada
2005, this time the changes are less pronounced and yet there are some key extra
facilities, especially in the areas of real-time programming.

Closely linked to the development of Ada has been this book on its concurrent
features. Starting out as ‘Concurrent Programming in Ada’, it became ‘Concur-
rency in Ada’ when the Ada 95 version of the language was defined. There were
two editions of this title. With the new features of Ada 2005, it has been decided to
broaden the focus of the book to include real-time issues – hence this first edition
of the new title ‘Concurrent and Real-Time Programming in Ada 2005’. No prior
knowledge of concurrent programming (in general) or of Ada tasking (in particu-
lar) is assumed in this book. However, readers should have a good understanding
of at least one high-level sequential programming language and some knowledge
of operating system principles.

This book is aimed both at professional software engineers and at students of
computer science (and other related disciplines). Many millions of lines of Ada
83 and 95 code have been produced world wide, and over the next decade a wide
range of new applications will be designed with Ada 2005 as the target language.
It is important that Ada programmers do not restrict themselves to a sequential
subset of the language on the dubious assumption that tasking is not appropriate
to their work, or for fear that the tasking model is too complex and expensive.
Tasking is an integral part of the language, and programmers must be familiar with,

xi

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86697-2 - Concurrent and Real-Time Programming in Ada 2005
Alan Burns and Andy Wellings
Frontmatter
More information

http://www.cambridge.org/0521866979
http://www.cambridge.org
http://www.cambridge.org


xii Preface

if not experienced in, its use. Due to space considerations, books that describe
the entire language may not deal adequately with the tasking model; this book
therefore concentrates exclusively on this model.

Students studying real-time programming, software engineering, concurrent pro-
gramming or language design should find this book useful in that it gives a compre-
hensive description of the features that one language provides. Ada is not merely
a product of academic research (as are many concurrent programming languages)
but is a language intended for actual use in industry. Its model of tasking was
therefore integrated into the entire language design, and the interactions between
tasking and non-tasking features were carefully defined. Consequently, the study
of Ada’s model of concurrency should be included in those advanced courses men-
tioned above. However, this does not imply that the full tasking model is free from
controversy, has a proven formal semantic basis or is amenable to efficient imple-
mentation. The nature of these areas of ‘discussion’ are dealt with, as they arise in
this book.

Unlike Ada 83, which defined a single language, the Ada 95 and 2005 definitions
have a core language design plus a number of domain-specific annexes. A compiler
need not support all the annexes but it must support the core language. Most of the
tasking features are contained in the core definition. But there are relevant annexes
that address systems programming and real-time programming.

The first chapter provides a basic introduction to concurrent and real-time sys-
tems and gives an overview of the clock facilities within Ada.

Chapters 2 and 3 look in detail at the uses of concurrent programming and the
inherent difficulties of providing inter-process communication. There is, as yet, no
agreement on which primitives a concurrent programming language should support
and, as a consequence, many different styles and forms exist. In order to understand
the Ada tasking model fully, it is necessary to appreciate these different approaches
and the problems faced by the user of any language that supports multi-processing.

The Ada task is introduced in Chapter 4 and the rendezvous and the important
select statement are considered in the following two chapters. The rendezvous pro-
vides a synchronous communication mechanism. Data-orientated asynchronous
communication is considered in Chapter 7, together with the important abstraction
of a protected object. This provides a passive means of encapsulating data and pro-
viding mutual exclusion. An effective way of increasing the expressive power of
the communication primitives is the requeue facility. This is described, with many
examples given, in Chapter 8. The relationship between tasks and exceptions is
dealt with in Chapter 9. This chapter also covers the means by which one task can
affect the behaviour of another task asynchronously.

Chapter 10 considers the interplay between tasking and the object-orientated
programming features of the language. This forms the basis from which a collec-

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86697-2 - Concurrent and Real-Time Programming in Ada 2005
Alan Burns and Andy Wellings
Frontmatter
More information

http://www.cambridge.org/0521866979
http://www.cambridge.org
http://www.cambridge.org


Preface xiii

tion of concurrency utilities can be defined. A number of these are provided in
Chapter 11.

As indicated earlier, a number of the annexes deal with issues of relevance to
concurrent programming. Chapter 12 considers systems programming (including
support for low level programming). For real-time programmers, perhaps the most
important issue is scheduling. Ada provides a comprehensive list of features that
are covered in Chapters 13 and 14. In addition to scheduling, real-time programs
need to have control over when events are executed and control over the resources
that tasks and groups of task require at run-time. These issues are covered in Chap-
ter 15.

Having introduced all of Ada’s relevant features, Chapter 16 then provides a
collection of real-time utilities that can be used to gain access to the power of the
language. This is followed in Chapter 17 by consideration of the usefulness of
subsetting Ada and using profiles to gain access to efficient and certifiable imple-
mentations. In particular, the Ravenscar profile is described in this chapter. Finally,
in Chapter 18 conclusions are provided and a short summary of the differences be-
tween Ada 2005 and Ada 95 is given in the context of concurrent and real-time
programming, together with a brief look to the future.

The material presented in this book reflects the authors’ experiences in both us-
ing and teaching Ada tasking. Teaching experience has been obtained by writing
and presenting courses at the University of York (UK) and by developing educa-
tional material and training.

Further material

Further material on all aspects of real-time and concurrency in Ada 2005 can be
found on a www page dedicated to this book:
http://www.cs.york.ac.uk/∼rts/ada/CRTIA.html.

Real-time systems research at York

Alan Burns and Andy Wellings are members of the Real-Time Systems Research
Group in the Department of Computer Science at the University of York (UK).

The aim of the group is to undertake fundamental research, and to bring mod-
ern techniques, methods and tools into engineering practice. Areas of application
of our work include space and avionic systems, engine controllers, automobile
control, manufacturing systems, sensor nets and multi-media systems. Specifi-
cally, the group is addressing: scheduling theories, language design, kernel design,
communication protocols, distributed and parallel architectures and program code
analysis.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86697-2 - Concurrent and Real-Time Programming in Ada 2005
Alan Burns and Andy Wellings
Frontmatter
More information

http://www.cambridge.org/0521866979
http://www.cambridge.org
http://www.cambridge.org


xiv Preface

Further information about the group’s activities can be found via our www page:
http://www.cs.york.ac.uk/∼rts

Acknowledgements

The authors would like to thank the following individuals who have, directly or
indirectly, helped during the preparation of this book. In particular, John Barnes,
Andrew Borg, Javier Miranda, Pat Rogers, Ed Schonberg, and Tucker Taft.

The authors also wish to thank members of ISO committee ARG and attendees
of the IRTAW series for their input to some of the issues discussed in this book.

Finally, we would like to thank the AdaCore GNAT project team for all their
efforts to produce a public domain Ada 2005 compiler. Writing a book for a new
language is very difficult when there are no validated compilers to help test the
code. Access to the GNAT system has provided us with more confidence that the
code given in this book is at least syntactically correct!

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86697-2 - Concurrent and Real-Time Programming in Ada 2005
Alan Burns and Andy Wellings
Frontmatter
More information

http://www.cambridge.org/0521866979
http://www.cambridge.org
http://www.cambridge.org

