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Preface

The development of the Ada programming language forms a unique and, at times,
intriguing contribution to the history of computer languages. As all users of Ada
must know, the original language design was a result of competition between a
number of organisations, each of which attempted to give a complete language
definition in response to a series of documented requirements. This gave rise to
Ada 83. Following 10 years of use, Ada was subject to a complete overhaul. The
resulting language, Ada 95, had a number of significant changes from its predeces-
sor. A further 10 years of use has produced another version of Ada, known as Ada
2005, this time the changes are less pronounced and yet there are some key extra
facilities, especially in the areas of real-time programming.

Closely linked to the development of Ada has been this book on its concurrent
features. Starting out as ‘Concurrent Programming in Ada’, it became ‘Concur-
rency in Ada’ when the Ada 95 version of the language was defined. There were
two editions of this title. With the new features of Ada 2005, it has been decided to
broaden the focus of the book to include real-time issues – hence this first edition
of the new title ‘Concurrent and Real-Time Programming in Ada 2005’. No prior
knowledge of concurrent programming (in general) or of Ada tasking (in particu-
lar) is assumed in this book. However, readers should have a good understanding
of at least one high-level sequential programming language and some knowledge
of operating system principles.

This book is aimed both at professional software engineers and at students of
computer science (and other related disciplines). Many millions of lines of Ada
83 and 95 code have been produced world wide, and over the next decade a wide
range of new applications will be designed with Ada 2005 as the target language.
It is important that Ada programmers do not restrict themselves to a sequential
subset of the language on the dubious assumption that tasking is not appropriate
to their work, or for fear that the tasking model is too complex and expensive.
Tasking is an integral part of the language, and programmers must be familiar with,

xi
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xii Preface

if not experienced in, its use. Due to space considerations, books that describe
the entire language may not deal adequately with the tasking model; this book
therefore concentrates exclusively on this model.

Students studying real-time programming, software engineering, concurrent pro-
gramming or language design should find this book useful in that it gives a compre-
hensive description of the features that one language provides. Ada is not merely
a product of academic research (as are many concurrent programming languages)
but is a language intended for actual use in industry. Its model of tasking was
therefore integrated into the entire language design, and the interactions between
tasking and non-tasking features were carefully defined. Consequently, the study
of Ada’s model of concurrency should be included in those advanced courses men-
tioned above. However, this does not imply that the full tasking model is free from
controversy, has a proven formal semantic basis or is amenable to efficient imple-
mentation. The nature of these areas of ‘discussion’ are dealt with, as they arise in
this book.

Unlike Ada 83, which defined a single language, the Ada 95 and 2005 definitions
have a core language design plus a number of domain-specific annexes. A compiler
need not support all the annexes but it must support the core language. Most of the
tasking features are contained in the core definition. But there are relevant annexes
that address systems programming and real-time programming.

The first chapter provides a basic introduction to concurrent and real-time sys-
tems and gives an overview of the clock facilities within Ada.

Chapters 2 and 3 look in detail at the uses of concurrent programming and the
inherent difficulties of providing inter-process communication. There is, as yet, no
agreement on which primitives a concurrent programming language should support
and, as a consequence, many different styles and forms exist. In order to understand
the Ada tasking model fully, it is necessary to appreciate these different approaches
and the problems faced by the user of any language that supports multi-processing.

The Ada task is introduced in Chapter 4 and the rendezvous and the important
select statement are considered in the following two chapters. The rendezvous pro-
vides a synchronous communication mechanism. Data-orientated asynchronous
communication is considered in Chapter 7, together with the important abstraction
of a protected object. This provides a passive means of encapsulating data and pro-
viding mutual exclusion. An effective way of increasing the expressive power of
the communication primitives is the requeue facility. This is described, with many
examples given, in Chapter 8. The relationship between tasks and exceptions is
dealt with in Chapter 9. This chapter also covers the means by which one task can
affect the behaviour of another task asynchronously.

Chapter 10 considers the interplay between tasking and the object-orientated
programming features of the language. This forms the basis from which a collec-
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Preface xiii

tion of concurrency utilities can be defined. A number of these are provided in
Chapter 11.

As indicated earlier, a number of the annexes deal with issues of relevance to
concurrent programming. Chapter 12 considers systems programming (including
support for low level programming). For real-time programmers, perhaps the most
important issue is scheduling. Ada provides a comprehensive list of features that
are covered in Chapters 13 and 14. In addition to scheduling, real-time programs
need to have control over when events are executed and control over the resources
that tasks and groups of task require at run-time. These issues are covered in Chap-
ter 15.

Having introduced all of Ada’s relevant features, Chapter 16 then provides a
collection of real-time utilities that can be used to gain access to the power of the
language. This is followed in Chapter 17 by consideration of the usefulness of
subsetting Ada and using profiles to gain access to efficient and certifiable imple-
mentations. In particular, the Ravenscar profile is described in this chapter. Finally,
in Chapter 18 conclusions are provided and a short summary of the differences be-
tween Ada 2005 and Ada 95 is given in the context of concurrent and real-time
programming, together with a brief look to the future.

The material presented in this book reflects the authors’ experiences in both us-
ing and teaching Ada tasking. Teaching experience has been obtained by writing
and presenting courses at the University of York (UK) and by developing educa-
tional material and training.

Further material

Further material on all aspects of real-time and concurrency in Ada 2005 can be
found on a www page dedicated to this book:
http://www.cs.york.ac.uk/∼rts/ada/CRTIA.html.

Real-time systems research at York

Alan Burns and Andy Wellings are members of the Real-Time Systems Research
Group in the Department of Computer Science at the University of York (UK).

The aim of the group is to undertake fundamental research, and to bring mod-
ern techniques, methods and tools into engineering practice. Areas of application
of our work include space and avionic systems, engine controllers, automobile
control, manufacturing systems, sensor nets and multi-media systems. Specifi-
cally, the group is addressing: scheduling theories, language design, kernel design,
communication protocols, distributed and parallel architectures and program code
analysis.
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xiv Preface

Further information about the group’s activities can be found via our www page:
http://www.cs.york.ac.uk/∼rts
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