
1

Introduction

Designing, implementing and maintaining software for large systems is a non-
trivial exercise and one which is fraught with difficulties. These difficulties re-
late to the management of the software production process itself, as well as to the
size and complexity of the software components. Ada is a mature general-purpose
programming language that has been designed to address the needs of large-scale
system development, especially in the embedded systems domain. A major aspect
of the language, and the one that is described comprehensively in this book, is its
support for concurrent and real-time programming.

Ada has evolved over the last thirty years from an object-based concurrent pro-
gramming language into a flexible concurrent and distributed object-oriented lan-
guage that is well suited for high-reliability, long-lived applications. It has been
particularly successful in high-integrity areas such as air traffic control, space sys-
tems, railway signalling, and both the civil and military avionics domains. Ada
success is due to a number of factors including the following.

• Hierarchical libraries and other facilities that support large-scale software devel-
opment.

• Strong compile-time type checking.
• Safe object-oriented programming facilities.
• Language-level support for concurrent programming.
• A coherent approach to real-time systems development.
• High-performance implementations.
• Well-defined subsetting mechanisms, and in particular the SPARK subset for

formal verification.

The development and standardisation of Ada have progressed through a number
of definitions, the main ones being Ada 83 and Ada 95. Ada 2005 now builds
on this success and introduces a relatively small number of language changes to
provide:

1

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86697-2 - Concurrent and Real-Time Programming in Ada 2005
Alan Burns and Andy Wellings
Excerpt
More information

http://www.cambridge.org/0521866979
http://www.cambridge.org
http://www.cambridge.org


2 Introduction

• Better support for multiple inheritance through the addition of Java-like inter-
faces.

• Better support for OO style of programming by use of the Object.Operator
notation.

• Enhanced structure and visibility control via the introduction of ‘limited with
clauses’ that allow types in two library packages to refer to each other.

• More complete integration between object-oriented and concurrent program-
ming by the introduction of synchronised interfaces.

• Added flexibility to the support for real-time systems development via alterna-
tive scheduling mechanisms and more effective resource monitoring.

• A well-defined subset of the tasking model, called the Ravenscar profile, for
high-integrity applications.

• New library packages, for example an extensive ‘containers’ package for lists,
maps, vectors etc.

Ada 2005 attempts, successfully, to have the safety and portability of Java and
the efficiency and flexibility of C/C++. It also has the advantage of being an inter-
national standard with clear well-defined semantics.

The reference manual for Ada (ARM) differentiates between the ‘core’ language
and a number of annexes. Annexes do not add to the syntax of the language but give
extra facilities and properties, typically by the introduction of language-defined
library packages. For the focus of this book, the key elements of the reference
manual are Chapter 9 which deals with tasking and the Real-Time Systems Annex
(Annex D). In terms of presentation, this book does not draw attention to core
language or annex-defined facilities. All are part of the Ada language.

The remainder of this chapter provides an introduction to concurrency and real-
time. The book then considers, in depth, the role that Ada can play in the con-
struction of concurrent and real-time systems. It gives particular emphasis to the
new features of Ada 2005. However, prior knowledge of the earlier language defi-
nitions is not required as a complete description of these features is provided. But
the reader is assumed to be familiar with object-oriented programming in sequen-
tial Ada. For a more detailed discussion on the sequential aspects of Ada, the
reader should see the further reading section at the end of this chapter.

1.1 Concurrency

Support for concurrency in a language allows the programmer to express (potential)
parallelism in application programs. There are three main motivations for wanting
to write concurrent programs.

• To fully utilise the processor – Modern processors run at speeds far in excess of

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86697-2 - Concurrent and Real-Time Programming in Ada 2005
Alan Burns and Andy Wellings
Excerpt
More information

http://www.cambridge.org/0521866979
http://www.cambridge.org
http://www.cambridge.org


1.2 Real-time systems 3

the input and output devices with which they must interact. Concurrency allows
the programmer to express other activities to be performed while the processor
is waiting for IO to complete.

• To allow more than one processor to solve a problem – A sequential program
can only be executed by one processor (unless the compiler has transformed the
program into a concurrent one). A concurrent program is able to exploit true
parallelism and obtain faster execution.

• To model parallelism in the real world – Real-time and embedded programs
have to control and interface with real-world entities (robots, conveyor belts
etc.) that are inherently parallel. Reflecting the parallel nature of the system
in the structures of the program makes for a more readable, maintainable and
reliable application.

One of the major criticisms of concurrent programming is that it introduces over-
heads and therefore results in slower execution when the program is running on a
single-processor system. Nevertheless, the software engineering issues outweigh
these concerns, just as the efficiency concerns of programming in a high-level se-
quential language are outweighed by its advantages over programming with an
assembly language. Chapter 2 further explores these concerns, and discusses in
detail the nature and use of concurrent programming techniques.

Writing concurrent programs introduces new problems that do not exist in their
sequential counterparts. Concurrent activities need to coordinate their actions, if
they are to work together to solve a problem. This coordination can involve in-
tricate patterns of communication and synchronisation. If not properly managed,
these can add significant complexity to the programs and result in new error condi-
tions arising. These general problems and their solutions are explained in Chapter
3. Chapters 4–11 then discuss in detail the facilities that Ada provides to create
concurrent activities (called tasks in Ada) and to manage the resulting communi-
cation and synchronisation needs.

1.2 Real-time systems

A major application area of concurrent programming is real-time systems. These
are systems that have to respond to externally generated input stimuli (including
the passage of time) within a finite and specified time interval. They are inherently
concurrent because they are often embedded in a larger engineering system, and
have to model the parallelism that exists in the real-world objects that they are
monitoring and controlling. Process control, manufacturing support, command and
control are all example application areas where real-time systems have a major role.
As computers become more ubiquitous and pervasive, so they will be embedded

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86697-2 - Concurrent and Real-Time Programming in Ada 2005
Alan Burns and Andy Wellings
Excerpt
More information

http://www.cambridge.org/0521866979
http://www.cambridge.org
http://www.cambridge.org


4 Introduction

in a wide variety of common materials and components throughout the home and
workplace – even in the clothes we wear. These computers will need to react with
their environment in a timely fashion.

It is common to distinguish between hard and soft real-time systems. Hard real-
time systems are those where it is absolutely imperative that responses occur within
the specified deadline. Soft real-time systems are those where response times are
important, but the system will still function correctly if deadlines are occasionally
missed. Soft systems can be distinguished from interactive ones in which there are
no explicit deadlines. For example, the flight control system of a combat aircraft
is a hard real-time system because a missed deadline could lead to a catastrophic
situation and loss of the aircraft, whereas a data acquisition system for a process
control application is soft, as it may be defined to sample an input sensor at reg-
ular intervals but to tolerate intermittent delays. A text editor is an example of
an interactive system. Here, performance is important (a slow editor will not be
used); however, the occasional poor response will not impact on the overall sys-
tem’s performance. Of course, many systems will have both hard and soft real-time
subsystems along with some interactive components. What they have in common
is that they are all concurrent.

Time is obviously a critical resource for real-time systems and must be managed
effectively. Unfortunately, it is very difficult to design and implement systems
that will guarantee that the appropriate outputs will be generated at the appropriate
times under all possible conditions. To do this and make full use of all comput-
ing resources at all times is often impossible. For this reason, real-time systems
are usually constructed using processors with considerable spare capacity, thereby
ensuring that ‘worst-case behavior’ does not produce any unwelcome delays dur-
ing critical periods of the system’s operation. Given adequate processing power,
language and run-time support are required to enable the programmer to

• specify times at which actions are to be performed,

• specify times at which actions are to be completed,

• respond to situations where all the timing requirements cannot be met,

• respond to situations where the timing requirements are changing dynamically.

These are called real-time control facilities. They enable the program to synchro-
nise with time itself. For example, with digital control algorithms, it is necessary
to sample readings from sensors at certain periods of the day, for example, 2pm,
3pm and so on, or at regular intervals, for instance, every 10 milliseconds (with
analogue-to-digital converters, sample rates can vary from a few hundred hertz to
several hundred megahertz). As a result of these readings, other actions will need
to be performed. In order to meet response times, it is necessary for a system’s

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86697-2 - Concurrent and Real-Time Programming in Ada 2005
Alan Burns and Andy Wellings
Excerpt
More information

http://www.cambridge.org/0521866979
http://www.cambridge.org
http://www.cambridge.org


1.2 Real-time systems 5

behaviour to be predictable. Providing these real-time facilities is one of the main
goals of Ada and its Real-Time Systems Annex.

As well as being concurrent, real-time systems also have the following additional
characteristics:

Large and complex. Real-time systems vary from simple single-processor em-
bedded systems (consisting of a few hundred lines of code) to multi-platform,
multi-language distributed systems (consisting of millions of lines of code). The
issue of engineering large and complex systems is an important topic that Ada and
its support environments do address. However, consideration of this area is beyond
the scope of this book.

Extremely reliable and safe. Many real-time systems control some of society’s
critical systems such as air traffic control or chemical/power plants. The software
must, therefore, be engineered to the highest integrity, and programs must attempt
to tolerate faults and continue to operate (albeit perhaps providing a degraded ser-
vice). In the worst case, a real-time system should make safe the environment
before shutting down in a controlled manner. Unfortunately, some systems do not
have easily available safe states when they are operational (for example, an unsta-
ble aircraft) consequently, continued operation in the presence of faults or damage
is a necessity. Ada’s design goals facilitate the design of reliable and robust pro-
grams. Its exception handling facility allows error recovery mechanisms to be
activated. The Real-Time Systems Annex extends the core language to allow the
flexible detection of common timing-related problems (such as missed deadlines).

Interaction with hardware interfaces. The nature of embedded systems re-
quires the computer components to interact with the external world. They need
to monitor sensors and control actuators for a wide variety of real-world devices.
These devices interface to the computer via input and output registers, and their
operational requirements are device and computer dependent. Devices may also
generate interrupts to signal to the processor that certain operations have been per-
formed or that error conditions have arisen. In the past, the interfacing to devices
either has been left under the control of the operating system or has required the
application programmer to resort to assembly language inserts to control and ma-
nipulate the registers and interrupts. Nowadays, because of the variety of devices
and the time-critical nature of the associated interactions, their control must often
be direct, and not through a layer of operating system functions. Furthermore, re-
liability requirements argue against the use of low-level programming techniques.
Ada’s representation items allow memory-mapped device registers to be accessed
and interrupts to be handled by protected procedures.

Efficient implementation and a predictable execution environment. Since
real-time systems are time-critical, efficiency of implementation will be more im-
portant than in other systems. It is interesting that one of the main benefits of using

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86697-2 - Concurrent and Real-Time Programming in Ada 2005
Alan Burns and Andy Wellings
Excerpt
More information

http://www.cambridge.org/0521866979
http://www.cambridge.org
http://www.cambridge.org


6 Introduction

a high-level language is that it enables the programmer to abstract away from im-
plementation details and to concentrate on solving the problem at hand. Unfortu-
nately, embedded computer systems programmers cannot afford this luxury. They
must be constantly concerned with the cost of using particular language features.
For example, if a response to some input is required within a microsecond, there
is no point in using a language feature whose execution takes a millisecond! Ada
makes predictability a primary concern in all its design trade-offs.

Chapters 12–17 discuss Ada’s support for real-time systems in general, and also,
where appropriate, how it facilitates the programming of efficient and reliable em-
bedded systems.

1.3 Ada’s time and clock facilities

Time values and clocks are used throughout this book to help manage interactions
between concurrent activities and communication with the external environment.
Consequently, this chapter concludes with a detailed discussion of the Ada facili-
ties in this area.

To coordinate a program’s execution with the natural time of the environment
requires access to a hardware clock that approximates the passage of real time.
For long-running programs (that is, years of non-stop execution), this clock may
need to be resynchronised to some external standard (such as International Atomic
Time) but from the program’s point of view, the clock is the source of real time.

Ada provides access to this clock by providing several packages. The main
section of the ARM (Ada Reference Manual) defines a compulsory library pack-
age called Ada.Calendar that provides an abstraction for ‘wall clock’ time that
recognises leap years, leap seconds and other adjustments. Child packages support
the notion of time zones, and provide arithmetic and formatting functions. In the
Real-Time Systems Annex, a second representation is given that defines a mono-
tonic (that is, non-decreasing) regular clock (package Ada.Real Time). Both
these representations should map down to the same hardware clock but cater for
different application needs.

First consider package Ada.Calendar:

package Ada.Calendar is

type Time is private;

subtype Year_Number is Integer range 1901..2399;
subtype Month_Number is Integer range 1..12;
subtype Day_Number is Integer range 1..31;
subtype Day_Duration is Duration range 0.0..86_400.0;

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86697-2 - Concurrent and Real-Time Programming in Ada 2005
Alan Burns and Andy Wellings
Excerpt
More information

http://www.cambridge.org/0521866979
http://www.cambridge.org
http://www.cambridge.org


1.3 Ada’s time and clock facilities 7

function Clock return Time;

function Year(Date:Time) return Year_Number;
function Month(Date:Time) return Month_Number;
function Day(Date:Time) return Day_Number;
function Seconds(Date:Time) return Day_Duration;

procedure Split(Date:in Time; Year:out Year_Number;
Month:out Month_Number; Day:out Day_Number;
Seconds:out Day_Duration);

function Time_Of(Year:Year_Number; Month:Month_Number;
Day:Day_Number;
Seconds:Day_Duration := 0.0) return Time;

function "+"(Left:Time;Right:Duration) return Time;
function "+"(Left:Duration;Right:Time) return Time;
function "-"(Left:Time;Right:Duration) return Time;
function "-"(Left:Time;Right:Time) return Duration;

function "<"(Left,Right:Time) return Boolean;
function "<="(Left,Right:Time) return Boolean;
function ">"(Left,Right:Time) return Boolean;
function ">="(Left,Right:Time) return Boolean;

Time_Error:exception;
-- Time_Error may be raised by
-- Time_Of, Split, Year, "+" and "-"

private
... -- not specified by the language

end Ada.Calendar;

A value of the private type Time is a combination of the date and the time of
day, where the time of day is given in seconds from midnight. Seconds are de-
scribed in terms of a subtype Day Durationwhich is, in turn, defined by means
of Duration. The fixed point type Duration is one of the predefined Scalar
types and has a range which, although implementation dependent, must be at least
–86 400.0 .. +86 400.0. The value 86 400 is the number of seconds in a day. The
accuracy of Duration is also implementation dependent but the smallest repre-
sentable value (Duration’Small) must not be greater than 20 milliseconds (it
is recommended in the ARM that it is no greater than 100 microseconds).

The current time is returned by the function Clock. Conversion between Time
and program accessible types, such as Year Number, is provided by subpro-
grams Split and Time Of. In addition, some arithmetic and boolean operations
are specified. Package Calendar, therefore, defines an appropriate structure for
an abstract data type for time.

New to Ada 2005 is a child package of Calendar that provides further support

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86697-2 - Concurrent and Real-Time Programming in Ada 2005
Alan Burns and Andy Wellings
Excerpt
More information

http://www.cambridge.org/0521866979
http://www.cambridge.org
http://www.cambridge.org


8 Introduction

for arithmetic on time values. It is now possible to add and subtract a number of
days to and from a time value (rather than express the interval as a duration).

package Ada.Calendar.Arithmetic is
-- Arithmetic on days:
type Day_Count is range
-366*(1+Year_Number’Last - Year_Number’First) ..
366*(1+Year_Number’Last - Year_Number’First);

subtype Leap_Seconds_Count is Integer range -999..999;
procedure Difference (Left, Right : in Time;

Days : out Day_Count;
Seconds : out Duration;
Leap_Seconds : out Leap_Seconds_Count);

function "+" (Left : Time; Right : Day_Count)
return Time;

function "+" (Left : Day_Count; Right : Time)
return Time;

-- similarly for "-"
end Ada.Calendar.Arithmetic;

Other new clock-related packages in Ada 2005 include a package to support the
formatting of time values for input and output, and rudimentary support for time
zones.

with Ada.Calendar.Time_Zones;
package Ada.Calendar.Formatting is

type Day_Name is (Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday);

function Day_of_Week (Date : Time) return Day_Name;

subtype Hour_Number is Natural range 0 .. 23;
subtype Minute_Number is Natural range 0 .. 59;
subtype Second_Number is Natural range 0 .. 59;
subtype Second_Duration is Day_Duration range 0.0 .. 1.0;

function Hour(Date : Time;
Time_Zone : Time_Zones.Time_Offset := 0)
return Hour_Number;

... -- similarly for Minute, Second, Sub_Second

function Seconds_Of(Hour : Hour_Number; Minute : Minute_Number;
Second : Second_Number := 0;
Sub_Second : Second_Duration := 0.0)

return Day_Duration;

procedure Split(Seconds : in Day_Duration;
Hour : out Hour_Number;
Minute : out Minute_Number;
Second : out Second_Number;
Sub_Second : out Second_Duration);

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86697-2 - Concurrent and Real-Time Programming in Ada 2005
Alan Burns and Andy Wellings
Excerpt
More information

http://www.cambridge.org/0521866979
http://www.cambridge.org
http://www.cambridge.org


1.3 Ada’s time and clock facilities 9

... -- other variations

function Image(Date : Time;
Include_Time_Fraction : Boolean := False;
Time_Zone : Time_Zones.Time_Offset := 0)

return String;

function Value(Date : String;
Time_Zone : Time_Zones.Time_Offset := 0)

return Time;
function Image (Elapsed_Time : Duration;

Include_Time_Fraction : Boolean := False)
return String;

function Value (Elapsed_Time : String) return Duration;
end Ada.Calendar.Formatting;

package Ada.Calendar.Time_Zones is

-- Time zone manipulation:

type Time_Offset is range -1440 .. 1440;

Unknown_Zone_Error : exception;

function UTC_Time_Offset (Date : Time := Clock)
return Time_Offset;

end Ada.Calendar.Time_Zones;

The Ada.Real Time package has a similar form to the Ada.Calendar
package:

package Ada.Real_Time is
type Time is private;
Time_First: constant Time;
Time_Last: constant Time;
Time_Unit: constant := implementation-defined-real-number;
Time_Unit : constant := 1.0;

type Time_Span is private;
Time_Span_First: constant Time_Span;
Time_Span_Last: constant Time_Span;
Time_Span_Zero: constant Time_Span;
Time_Span_Unit: constant Time_Span;

Tick: constant Time_Span;
function Clock return Time;

function "+" (Left: Time; Right: Time_Span) return Time;
function "+" (Left: Time_Span; Right: Time) return Time;
function "-" (Left: Time; Right: Time_Span) return Time;
function "-" (Left: Time; Right: Time) return Time_Span;

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86697-2 - Concurrent and Real-Time Programming in Ada 2005
Alan Burns and Andy Wellings
Excerpt
More information

http://www.cambridge.org/0521866979
http://www.cambridge.org
http://www.cambridge.org


10 Introduction

function "<" (Left, Right: Time) return Boolean;
function "<="(Left, Right: Time) return Boolean;
function ">" (Left, Right: Time) return Boolean;
function ">="(Left, Right: Time) return Boolean;

function "+" (Left, Right: Time_Span) return Time_Span;
function "-" (Left, Right: Time_Span) return Time_Span;
function "-" (Right: Time_Span) return Time_Span;
function "/" (Left,Right : Time_Span) return Integer;
function "/" (Left : Time_Span; Right : Integer)

return Time_Span;
function "*" (Left : Time_Span; Right : Integer)

return Time_Span;
function "*" (Left : Integer; Right : Time_Span)

return Time_Span;

function "<" (Left, Right: Time_Span) return Boolean;
function "<="(Left, Right: Time_Span) return Boolean;
function ">" (Left, Right: Time_Span) return Boolean;
function ">="(Left, Right: Time_Span) return Boolean;

function "abs"(Right : Time_Span) return Time_Span;

function To_Duration (Ts : Time_Span) return Duration;
function To_Time_Span (D : Duration) return Time_Span;

function Nanoseconds (NS: Integer) return Time_Span;
function Microseconds (US: Integer) return Time_Span;
function Milliseconds (MS: Integer) return Time_Span;

type Seconds_Count is range implementation-defined;
procedure Split(T : in Time; SC: out Seconds_Count;

TS : out Time_Span);
function Time_Of(SC: Seconds_Count; TS: Time_Span)

return Time;
private

... -- not specified by the language
end Ada.Real_Time;

The Real Time.Time type represents time values as they are returned by
Real Time.Clock. The constant Time Unit is the smallest amount of time
representable by the Time type. The value of Tick must be no greater than one
millisecond; the range of Time (from the epoch that represents the program’s start-
up) must be at least fifty years. Other important features of this time abstraction are
described in the Real-Time Systems Annex; it is not necessary, for our purposes,
to consider them in detail here.

To illustrate how the above packages could be used, consider the following code
which tests to see if some sequence of statements executes within 1.7 seconds:

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86697-2 - Concurrent and Real-Time Programming in Ada 2005
Alan Burns and Andy Wellings
Excerpt
More information

http://www.cambridge.org/0521866979
http://www.cambridge.org
http://www.cambridge.org

