Functional integration successfully entered physics as path integrals in the 1942 Ph.D. dissertation of Richard P. Feynman, but it made no sense at all as a mathematical definition. Cartier and DeWitt-Morette have created, in this book, a new approach to functional integration. The close collaboration between a mathematician and a physicist brings a unique perspective to this topic. The book is self-contained: mathematical ideas are introduced, developed, generalized, and applied. In the authors’ hands, functional integration is shown to be a robust, user-friendly, and multi-purpose tool that can be applied to a great variety of situations, for example systems of indistinguishable particles, caustics-analysis, superanalysis, and non-gaussian integrals. Problems in quantum field theory are also considered. In the final part the authors outline topics that can profitably be pursued using material already presented.

Pierre Cartier is a mathematician with an extraordinarily wide range of interests and expertise. He has been called “un homme de la Renaissance.” He is Emeritus Director of Research at the Centre National de la Recherche Scientifique, France, and a long-term visitor of the Institut des Hautes Etudes Scientifiques. From 1981 to 1989, he was a senior researcher at the Ecole Polytechnique de Paris, and, between 1988 and 1997, held a professorship at the Ecole Normale Supérieure. He is a member of the Société Mathématique de France, the American Mathematical Society, and the Vietnamese Mathematical Society.

Cécile DeWitt-Morette is the Jane and Roland Blumberg Centennial Professor in Physics, Emerita, at the University of Texas at Austin. She is a member of the American and European Physical Societies, and a Membre d’Honneur de la Société Française de Physique. DeWitt-Morette’s interest in functional integration began in 1948. In F. J. Dyson’s words, “she was the first of the younger generation to grasp the full scope and power of the Feynman path integral approach in physics.” She is co-author with Yvonne Choquet-Bruhat of the two-volume book *Analysis, Manifolds and Physics*, a standard text first published in 1977, which is now in its seventh edition. She is the author of 100 publications in various areas of theoretical physics and has edited 28 books. She has lectured, worldwide, in many institutions and summer schools on topics related to functional integration.
Functional Integration:
Action and Symmetries

P. CARTIER AND C. DEWITT-MORETTE
Contents

Acknowledgements \hspace{1em} page xi
List of symbols, conventions, and formulary \hspace{1em} xv

PART I \hspace{1em} THE PHYSICAL AND MATHEMATICAL ENVIRONMENT

1 \hspace{1em} The physical and mathematical environment \hspace{1em} 3
A: \hspace{1em} An inheritance from physics \hspace{1em} 3
1.1 The beginning \hspace{1em} 3
1.2 Integrals over function spaces \hspace{1em} 6
1.3 The operator formalism \hspace{1em} 6
1.4 A few titles \hspace{1em} 7
B: \hspace{1em} A toolkit from analysis \hspace{1em} 9
1.5 A tutorial in Lebesgue integration \hspace{1em} 9
1.6 Stochastic processes and promeasures \hspace{1em} 15
1.7 Fourier transformation and prodistributions \hspace{1em} 19
C: \hspace{1em} Feynman's integral versus Kac's integral \hspace{1em} 23
1.8 Planck's blackbody radiation law \hspace{1em} 23
1.9 Imaginary time and inverse temperature \hspace{1em} 26
1.10 Feynman's integral versus Kac's integral \hspace{1em} 27
1.11 Hamiltonian versus lagrangian \hspace{1em} 29
References \hspace{1em} 31

PART II \hspace{1em} QUANTUM MECHANICS

2 \hspace{1em} First lesson: gaussian integrals \hspace{1em} 35
2.1 Gaussians in \mathbb{R} \hspace{1em} 35
2.2 Gaussians in \mathbb{R}^D \hspace{1em} 35
2.3 Gaussians on a Banach space \hspace{1em} 38
Contents

2.4 Variances and covariances 42
2.5 Scaling and coarse-graining 46
References 55

3 Selected examples 56
3.1 The Wiener measure and brownian paths 57
3.2 Canonical gaussians in L^2 and $L^{2,1}$ 59
3.3 The forced harmonic oscillator 63
3.4 Phase-space path integrals 73
References 76

4 Semiclassical expansion; WKB 78
4.1 Introduction 78
4.2 The WKB approximation 80
4.3 An example: the anharmonic oscillator 88
4.4 Incompatibility with analytic continuation 92
4.5 Physical interpretation of the WKB approximation 93
References 94

5 Semiclassical expansion; beyond WKB 96
5.1 Introduction 96
5.2 Constants of the motion 100
5.3 Caustics 101
5.4 Glory scattering 104
5.5 Tunneling 106
References 111

6 Quantum dynamics: path integrals and the operator formalism 114
6.1 Physical dimensions and expansions 114
6.2 A free particle 115
6.3 Particles in a scalar potential V 118
6.4 Particles in a vector potential \vec{A} 126
6.5 Matrix elements and kernels 129
References 130

PART III METHODS FROM DIFFERENTIAL GEOMETRY

7 Symmetries 135
7.1 Groups of transformations. Dynamical vector fields 135
7.2 A basic theorem 137
7.3 The group of transformations on a frame bundle 139
7.4 Symplectic manifolds 141
References 144

8 Homotopy 146
8.1 An example: quantizing a spinning top 146
8.2 Propagators on SO(3) and SU(2) 147
8.3 The homotopy theorem for path integration 150
8.4 Systems of indistinguishable particles. Anyons 151
8.5 A simple model of the Aharanov–Bohm effect 152
References 156

9 Grassmann analysis: basics 157
9.1 Introduction 157
9.2 A compendium of Grassmann analysis 158
9.3 Berezin integration 164
9.4 Forms and densities 168
References 173

10 Grassmann analysis: applications 175
10.1 The Euler–Poincaré characteristic 175
10.2 Supersymmetric quantum field theory 183
10.3 The Dirac operator and Dirac matrices 186
References 189

11 Volume elements, divergences, gradients 191
11.1 Introduction. Divergences 191
11.2 Comparing volume elements 197
11.3 Integration by parts 202
References 210

PART IV NON-GAUSSIAN APPLICATIONS

12 Poisson processes in physics 215
12.1 The telegraph equation 215
12.2 Klein–Gordon and Dirac equations 220
12.3 Two-state systems interacting with their environment 225
References 231

13 A mathematical theory of Poisson processes 233
13.1 Poisson stochastic processes 234
13.2 Spaces of Poisson paths 241
Contents

13.3 Stochastic solutions of differential equations 251
13.4 Differential equations: explicit solutions 262
 References 266

14 The first exit time; energy problems 268
14.1 Introduction: fixed-energy Green’s function 268
14.2 The path integral for a fixed-energy amplitude 272
14.3 Periodic and quasiperiodic orbits 276
14.4 Intrinsic and tuned times of a process 281
 References 284

PART V PROBLEMS IN QUANTUM FIELD THEORY

15 Renormalization 1: an introduction 289
15.1 Introduction 289
15.2 From paths to fields 291
15.3 Green’s example 297
15.4 Dimensional regularization 300
 References 307

16 Renormalization 2: scaling 308
16.1 The renormalization group 308
16.2 The $\lambda \phi^4$ system 314
 References 323

17 Renormalization 3: combinatorics, contributed
 by Markus Berg 324
17.1 Introduction 324
17.2 Background 325
17.3 Graph summary 327
17.4 The grafting operator 328
17.5 Lie algebra 331
17.6 Other operations 338
17.7 Renormalization 339
17.8 A three-loop example 342
17.9 Renormalization-group flows and nonrenormalizable
 theories 344
17.10 Conclusion 345
 References 351

18 Volume elements in quantum field theory,
 contributed by Bryce DeWitt 355
18.1 Introduction 355
Contents

18.2 Cases in which equation (18.3) is exact 357
18.3 Loop expansions 358
References 364

PART VI PROJECTS

19 Projects 367
19.1 Gaussian integrals 367
19.2 Semiclassical expansions 370
19.3 Homotopy 371
19.4 Grassmann analysis 373
19.5 Volume elements, divergences, gradients 376
19.6 Poisson processes 379
19.7 Renormalization 380

APPENDICES

Appendix A Forward and backward integrals. Spaces of pointed paths 387
Appendix B Product integrals 391
Appendix C A compendium of gaussian integrals 395
Appendix D Wick calculus, contributed by Alexander Wurm 399
Appendix E The Jacobi operator 404
Appendix F Change of variables of integration 415
Appendix G Analytic properties of covariances 422
Appendix H Feynman’s checkerboard 432

Bibliography 437
Index 451
Acknowledgements

Throughout the years, several institutions and their directors have provided the support necessary for the research and completion of this book.

From the inception of our collaboration in the late seventies to the conclusion of this book, the Institut des Hautes Etudes Scientifiques (IHES) at Bures-sur-Yvette has provided “La paix nécessaire à un travail intellectuel intense et la stimulation d’un auditoire d’élite.”¹ We have received much help from the Director, J. P. Bourguignon, and the intelligent and always helpful supportive staff of the IHES. Thanks to a grant from the Lounsbery Foundation in 2003 C. DeW. has spent three months at the IHES.

Among several institutions that have given us blocks of uninterrupted time, the Mathematical Institute of the University of Warwick played a special role thanks to K. David Elworthy and his mentoring of one of us (C. DeW.).

In the Fall of 2002, one of us (C. DeW.) was privileged to teach a course at the Sharif University of Technology (Tehran), jointly with Neda Sadooghi. C. DeW. created the course from the first draft of this book; the quality, the motivation, and the contributions of the students (16 men, 14 women) made teaching this course the experience that we all dream of.

The Department of Physics and the Center for Relativity of the University of Texas at Austin have been home to one of us and a welcoming retreat to the other. Thanks to Alfred Schild, founder and director of the Center for Relativity, one of us (C. DeW.) resumed a full scientific career after sixteen years cramped by rules regarding alleged nepotism.

This book has been so long on the drawing board that many friends have contributed to its preparation. One of them, Alex Wurm, has helped

¹ An expression of L. Rosenfeld.
Acknowledgements

C. DeW. in all aspects of the preparation from critical comments to typing the final version.

Cécile thanks her graduate students

My career began on October 1, 1944. My gratitude encompasses many teachers and colleagues. The list would be an exercise in name-dropping. For this book I wish to bring forth the names of those who have been my graduate students. Working with graduate students has been the most rewarding experience of my professional life. In a few years the relationship evolves from guiding a student to being guided by a promising young colleague.

Dissertations often begin with a challenging statement. When completed, a good dissertation is a wonderful document, understandable, carefully crafted, well referenced, presenting new results in a broad context.

I am proud and humble to thank the following.

Michael G. G. Laidlaw (Ph.D. 1971, UNC Chapel Hill) Quantum Mechanics in Multiply Connected Spaces.

Maurice M. Mizrahi (Ph.D. 1975, UT Austin) An Investigation of the Feynman Path Integral Formulation of Quantum Mechanics.

Benny Sheeks (Ph.D. 1979, UT Austin) Some Applications of Path Integration Using Prodistributions.

Tian Rong Zhang (Ph.D. 1985, UT Austin) Path Integral Formulation of Scattering Theory With Application to Scattering by Black Holes.

Alice Mae Young (Ph.D. 1985, UT Austin) Change of Variable in the Path Integral Using Stochastic Calculus.

Stephen Low (Ph.D. 1985, UT Austin) Path Integration on Spacetimes with Symmetry.

Acknowledgements

Matthias Ihl (Master 2001, UT Austin) The Bose/Fermi Oscillators in a New Supersymmetric Representation.
Marie E. Bell (Master 2002, UT Austin) Introduction to Supersymmetry.
List of symbols, conventions, and formulary

Symbols

\[A := B \]
\[A \int B \]
\[\theta \]
\[B \Rightarrow A \]
\[d^x l = dl/l \]
\[\partial^x / \partial l = l \partial / \partial l \]
\[\mathbb{R}^D, \mathbb{R}_D \]
\[\mathbb{R}^{D \times D} \]
\[X, X' \]
\[\langle x', x \rangle \]
\[(x, y) \]
\[(\mathbb{M}^D, g) \]
\[T \mathbb{M} \]
\[T^* \mathbb{M} \]
\[\mathcal{L}_X \]
\[U^{2D}(S), U^{2D} \]
\[\mathcal{P}_{\mu, \nu}(\mathbb{M}^D) \]
\[U_{\mu, \nu} := U^{2D}(S) \cap \mathcal{P}_{\mu, \nu}(\mathbb{M}^D) \]
List of symbols, conventions and formulary

\[h = h/(2\pi) \]
\[[h] = ML^2T^{-1} \]
\[\omega = 2\pi\nu \]
\[t_B = -i\hbar\beta = -i\hbar/(k_BT) \]
\[\tau = it \]

\[\hbar = h/(2\pi) \] Planck’s constant
\[[h] = ML^2T^{-1} \] physical (engineering) dimension of \(h \)
\[\nu \] frequency, \(\omega \) pulsation
\[(1.70) \]
\[(1.100) \]

Superanalysis
(Chapter 9)
\[\tilde{A} \] parity of \(A \in \{0, 1\} \)
\[AB = (-1)^{\tilde{A} \tilde{B}} BA \] graded commutativity
\[[A, B] \] graded commutator (9.5)
\[\{A, B\} \] graded anticommutator (9.6)
\[\wedge = (-1)^{\tilde{A} \tilde{B}} B \wedge A \] graded exterior algebra
\[\xi^\mu \xi^\sigma = -\xi^\sigma \xi^\mu \] Grassmann generators (9.11)
\[z = u + v \] supernumber, \(u \) even \(\in \mathbb{C}_c \), \(v \) odd \(\in \mathbb{C}_a \) (9.12)
\[\mathbb{R}_c \subset \mathbb{C}_c \] real elements of \(\mathbb{C}_c \) (9.16)
\[\mathbb{R}_a \subset \mathbb{C}_a \] real elements of \(\mathbb{C}_a \) (9.16)
\[z = z_B + z_S \] supernumber; \(z_B \) body, \(z_S \) soul (9.12)
\[x^A = (x^a, \xi^a) \in \mathbb{R}^{n+1}_\nu \] superpoints (9.17)
\[z = c_0 + c_i \xi^i + \frac{1}{2!} c_{ij} \xi^i \xi^j + \cdots \]
\[= \rho + i\sigma, \]
\[z^* := \rho - i\sigma, \]
\[z^\dagger = \rho - i\sigma, \] where both \(\rho \) and \(\sigma \) have real coefficients
\[(zz')^* = z^* z'^* \] (9.13)
\[\text{hermitian conjugate,} \ (zz')^\dagger = z'^\dagger z^\dagger \]

Conventions
We use traditional conventions unless there is a compelling reason for using a different one. If a sign is hard to remember, we recall its origin.

Metric signature on pseudoriemannian spaces
\[\eta_{\mu\nu} = \text{diag}(+,-,-,-) \]
\[p_\mu p^\mu = (p^0)^2 - |\vec{p}|^2 = m^2 c^2, \] \(p^0 = E/c \)
\[p_\mu x^\mu = Et - \vec{p} \cdot \vec{x}, \] \(x^0 = ct \)
\[E = h\omega = h\nu, \] \(\vec{p} = h \vec{k} \), plane wave \(\omega = \vec{v} \cdot \vec{k} \)

Positive-energy plane wave \(\exp(-ip_\mu x^\mu/h) \)
Clifford algebra
\[\gamma_\mu \gamma_\nu + \gamma_\nu \gamma_\mu = 2\eta_{\mu\nu} \]
List of symbols, conventions and formulary xvii

Quantum operators

\[[p_\mu, x^\nu] = -i\hbar\delta^\nu_\mu \Rightarrow p_\mu = -i\hbar\partial_\mu \]

Quantum physics (time \(t \)) and statistical mechanics (parameter \(\tau \))

\(\tau = it \) (see (1.100))

Physical dimension

\[[\hbar] = ML^2T^{-1} \]

\[h^{-1}\langle p, x \rangle = \frac{2\pi}{\hbar}\langle p, x \rangle \text{ is dimensionless} \]

Fourier transforms

\[(\mathcal{F} f)(x') := \int_{\mathbb{R}^D} d^Dx \exp(-2\pi i\langle x', x \rangle)f(x) \quad x \in \mathbb{R}^D, x' \in \mathbb{R}^D \]

For Grassmann variables

\[(\mathcal{F} f)(\kappa) := \int \delta \xi \exp(-2\pi i\kappa \xi)f(\xi) \]

In both cases

\[\langle \delta, f \rangle = f(0) \quad \text{i.e. } \delta(\xi) = C^{-1}\xi \]

\[\mathcal{F} \delta = 1 \quad \text{i.e. } C^2 = (2\pi i)^{-1} \]

\[\int \delta \xi \xi = C, \quad \text{here } C^2 = (2\pi i)^{-1} \]

Formulary (giving a context to symbols)

- Wiener integral

\[\mathbb{E}\left[\exp\left(-\int_{\tau_a}^{\tau_b} d\tau V(q(\tau)) \right) \right] \quad (1.1) \]

- Peierls bracket

\[(A, B) := \mathcal{D}_A^\dagger B - (-1)^{\bar{A}\bar{B}}\mathcal{D}_B^\dagger A \quad (1.9) \]

- Schwinger variational principle

\[\delta\langle A|B \rangle = i\langle A|\delta S/\hbar|B \rangle \quad (1.11) \]

- Quantum partition function

\[Z(\beta) = \text{Tr}(e^{-\beta H}) \quad (1.71) \]
List of symbols, conventions and formulary

- Schrödinger equation
 \[
 \begin{aligned}
 i\hbar \partial_t \psi(x,t) &= (-\frac{1}{2} \mu^2 \Delta_x + \hbar^{-1} V(x)) \psi(x,t) \\
 \psi(x,t_a) &= \phi(x)
 \end{aligned}
 \]
 (1.77)

 \[\mu^2 = \hbar/m\]

- Gaussian integral
 \[
 \int_X d\Gamma_{s,Q}(x) \exp(-2\pi i \langle x',x \rangle) := \exp(-s\pi W(x'))
 \]
 (2.29)\textsubscript{s}

 \[d\Gamma_{s,Q}x = \mathcal{D}_{s,Q}(x) \exp\left(-\frac{\pi}{s} Q(x)\right)\]
 (2.30)\textsubscript{s}

 \[
 Q(x) = \langle Dx, x \rangle, \quad W(x') = \langle x', Gx' \rangle
 \]
 (2.28)

- Sum without repetition
 \[
 \int_X d\Gamma_{s,Q}(x) \langle x_1', x \rangle \cdots \langle x_{2n}', x \rangle = \left(\frac{s}{2\pi}\right)^n \sum' W(x_1', x_{i_2}) \cdots W(x_{i_{2n-1}}', x_{i_{2n}})
 \]

- Linear maps
 \[
 \langle \tilde{L} y', x \rangle = \langle y', Lx \rangle
 \]
 (2.58)

 \[W_{\tilde{Y}} = W_{\tilde{X}} \circ \tilde{L}, \quad Q_{\tilde{X}} = Q_Y \circ L\]
 (Chapter 3, box)

- Scaling and coarse graining (Section 2.5)
 \[
 S_l u(x) = l^{[\nu]} u \left(\frac{x}{l} \right)
 \]

 \[S_l[a,b] = \begin{bmatrix} a & b \\ \overline{T} & \overline{l} \end{bmatrix}, \quad P_l := S_{l/l_0} \cdot \mu_{[l_0,l]}^*[\nu]\]
 (2.94)

- Jacobi operator
 \[
 S''(q) \cdot \xi \xi = \langle \mathcal{J}(q) \cdot \xi, \xi \rangle
 \]
 (5.7)

- Operator formalism
 \[
 \langle b|\hat{O}|a\rangle = \int_{P_{a,b}} O(\gamma) \exp(iS(\gamma)/\hbar) \mu(\gamma) \mathcal{D}\gamma
 \]
 (Chapter 6, box)

- Time-ordered exponential
 \[
 T \exp \left(\int_{t_0}^t ds A(s) \right)
 \]
 (6.38)
List of symbols, conventions and formulary xix

- Dynamical vector fields

\[dx(t, z) = X_A(x(t, z))dz^A(t) + Y(x(t, z))dt \] (7.14)

\[\Psi(t, x_0) := \int_{\mathbb{R}^D} Ds Q_0 \exp \left(-\frac{\pi}{s} Q_0(z) \right) \phi(x_0 \cdot \Sigma(t, z)) \] (7.12)

\[Q_0(z) := \int_T dt h_{AB} \dot{z}^A(t) \dot{z}^B(t) \] (7.8)

\[\left\{ \begin{array}{l}
\partial \Psi \over \partial t = \frac{s}{4\pi} h_{AB} L_{X_A} L_{X_B} \Psi + L_Y \Psi \\
\Psi(t_0, x) = \phi(x)
\end{array} \right. \] (7.15)

- Homotopy

\[|K(b, t_b; a, t_a)| = \left| \sum_{\alpha} \chi(\alpha) K^\alpha(b, t_b; a, t_a) \right| \] (Chapter 8, box)

- Koszul formula

\[L_X \omega = \text{Div}_\omega(X) \cdot \omega \] (11.1)

- Miscellaneous

\begin{align*}
\text{det exp} \ A &= \exp \text{tr} \ A \\
d \ln \text{det} \ A &= \text{tr}(A^{-1} \, dA) \\
\nabla^i f &\equiv \nabla^g \cdots f := g^{ij} \partial f / \partial x^j \quad \text{gradient} \\
(\nabla g^{-1} | V)_g &= V^j, j \quad \text{divergence} \\
(V | \nabla f) &= - (\text{div} V | f) \quad \text{gradient/divergence}
\end{align*} (11.47 - 11.79)

- Poisson processes

\[N(t) := \sum_{k=1}^{\infty} \theta(t - T_k) \quad \text{counting process} \] (13.17)

- Density of energy states

\[\rho(E) = \sum_n \delta(E - E_n), \quad H \psi_n = E_n \psi_n \]

- Time ordering

\[T(\phi(x_j)\phi(x_i)) = \begin{cases}
\phi(x_j)\phi(x_i) & \text{for } j > i \\
\phi(x_i)\phi(x_j) & \text{for } i > j
\end{cases} \] (15.7)
List of symbols, conventions and formulary

- The “measure” (Chapter 18)
 \[\mu[\phi] \approx (\text{sdet } G^+[\phi])^{-1/2} \] \hspace{1cm} (18.3)
 \[i_i S_{k[j]} G^{+ki} [\phi] = - i \delta^i_j \] \hspace{1cm} (18.4)
 \[G^{+ij}[\phi] = 0 \quad \text{when } i \gg j \] \hspace{1cm} (18.5)
 \[\phi^i = \begin{cases} u^i_{\text{in } A} a^A_{\text{in}} + u^i_{\text{in } A} a^A_{\text{in}}^* \\ u^i_{\text{out } X} a^X_{\text{out}} + u^i_{\text{out } X} a^X_{\text{out}}^* \end{cases} \] \hspace{1cm} (18.18)

- Wick (normal ordering)
 operator normal ordering
 \[(a + a^\dagger)(a + a^\dagger) = (a + a^\dagger)^2 : 1 \] \hspace{1cm} (D.1)
 functional normal ordering
 \[:F(\phi) :G := \exp \left(-\frac{1}{2} \Delta_G \right) F(\phi) \] \hspace{1cm} (D.4)
 functional laplacian defined by the covariance \(G \)
 \[\Delta_G := \int_{M^D} d^D x \int_{M^D} d^D y \ G(x, y) \frac{\delta^2}{\delta \phi(x) \delta \phi(y)} \] \hspace{1cm} (2.63)