Contents

Introduction

Part I The elements

1 Isotopes: weights and abundances
 1.1 Introduction: nuclei and their behaviour
 1.2 Atomic nuclei and binding energy, with some predictions on isotope abundances
 1.3 Summary

2 Introduction to the Universe: the baryonic matter

3 Element and isotope abundances: reference collection
 3.1 Hydrogen and helium and their special significance
 3.2 Metal-poor stars: the most ancient matter of the Galaxy
 3.3 Presolar grains
 3.4 The solar system element and isotope abundances
 3.5 Summary

4 Cosmological nucleosynthesis: production of H and He
 4.1 The expanding Universe and the Big Bang hypothesis
 4.2 Big Bang nucleosynthesis (BBN)
 4.3 The age of the Universe
 4.4 Summary

5 Stellar nucleosynthesis: lower-mass stars and the s-process
 5.1 Introduction
 5.2 Formation of stars
 5.3 Hydrogen and He burning and the evolution of a low-mass star
 5.4 Slow nucleosynthesis (s-process)
 5.5 Summary
Table of Contents

Part I Stellar nucleosynthesis: r- and associated processes

6 Stellar nucleosynthesis: r- and associated processes 68
6.1 Introduction to rapid nucleosynthesis (r-process): what does “rapid” mean? 68
6.2 Evolution of massive stars 69
6.3 Core-collapse supernovae (SNe II) and rapid nucleosynthesis 70
6.4 SNe Ia: nucleosynthesis and luminosity 76
6.5 Summary 77

Part II Timing of stellar nucleosynthesis

7 Timing of stellar nucleosynthesis 79
7.1 Cosmochronology from long-lived radioactive elements 79
7.2 The uranium isotopes: age and evolution of stellar nucleosynthesis 80
7.3 The age of stellar clusters: luminosity–temperature relationships 81
7.4 Summary 82

Part III Chemical evolution of the Galaxy

8 Chemical evolution of the Galaxy 83
8.1 Introduction: processes governing galactic chemical evolution 83
8.2 Milky Way evolution 84
8.3 The sources of short-lived radionuclides 91
8.4 Milky Way evolution: models and results 94
8.5 Summary 97

Early solar system: nebula formation, evolution and lifetime

9 Introduction to the solar nebula 101
10 The primary solar system objects and related processes 106
10.1 Solar nebula: initial composition and early development 106
10.2 Calcium–aluminium inclusions 108
10.3 An “absolute” age for the earliest solar system objects 117
10.4 Short-lived nuclides: further evidence for early CAI formation 120
10.5 Oxygen isotopes in nebula objects: the CAI array 128
10.6 CAI formation: concluding remarks 131

11 Chondritic meteorites 134
11.1 Introduction to chondritic meteorites: compositions and taxonomy 134
11.2 Chondrules and matrix 137
11.3 Metamorphism and equilibration in chondrites 142
Table of Contents

11.4 Highly volatile elements: hydrogen, carbon and nitrogen 144
11.5 Highly volatile elements: noble gases 146
11.6 Chondritic meteorites: time scales 152
11.7 Chondritic meteorites: formation processes 158
11.8 Summary: chondritic meteorites and early evolution of the solar nebula 161

12 Highly processed meteorites 163
12.1 Introduction: non-chondritic meteorites and their relationships 163
12.2 Magmatic fractionation and trace-element partitioning 164
12.3 Major and trace elements in non-chondritic meteorites 168
12.4 The chronology of planetesimal processing 175
12.5 Formation of non-chondritic stony and iron meteorites: processes and time scales 186
12.6 Summary: late nebular processes as recorded by non-chondritic meteorites 189

13 A summary of early solar system chronology 191

Part III Accretion of the Earth 197
14 Introduction to the planetary system, Earth and Moon 199
14.1 The solar system: the planets and satellites 199
14.2 A first look at the post-accretion Earth and Moon 201
15 Introduction to planetary accretion 208
15.1 Orderly growth 208
15.2 Runaway growth 209
15.3 Planet formation 210
16 Earth accretion: the giant impact(s) 211
16.1 Giant impacts: impactor mass and energy deposited 211
16.2 The post-impact Earth model 212
17 The post-accretion silicate Earth: comparison with meteorites 214
17.1 Introduction: principal reservoirs of the post-accretion Earth 214
17.2 The silicate Earth: ways of reconstruction 215
17.3 Major elements 216
17.4 Trace elements 218
17.5 Concept of a terrestrial magma ocean: the role of convection 225
17.6 Summary 230
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Core segregation</td>
<td>231</td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction: siderophile elements in the silicate mantle and light elements in the core</td>
<td>231</td>
</tr>
<tr>
<td>18.2</td>
<td>Successful core-formation models</td>
<td>236</td>
</tr>
<tr>
<td>18.3</td>
<td>Time constraints on terrestrial core segregation</td>
<td>240</td>
</tr>
<tr>
<td>19</td>
<td>Heavy “crust” on the top of the core</td>
<td>243</td>
</tr>
<tr>
<td>19.1</td>
<td>Introduction: geochemical indicators for the occurrence of an early-formed apparently isolated reservoir</td>
<td>243</td>
</tr>
<tr>
<td>19.2</td>
<td>Present-day status: the core–mantle transition zone</td>
<td>245</td>
</tr>
<tr>
<td>19.3</td>
<td>Early formation of the core–mantle transition</td>
<td>246</td>
</tr>
<tr>
<td>19.4</td>
<td>Summary: geochemical importance of the core–mantle transition zone</td>
<td>248</td>
</tr>
<tr>
<td>20</td>
<td>The early atmo-hydrosphere</td>
<td>250</td>
</tr>
<tr>
<td>20.1</td>
<td>Introduction</td>
<td>250</td>
</tr>
<tr>
<td>20.2</td>
<td>Noble-gas inventories and constraints on atmosphere evolution</td>
<td>251</td>
</tr>
<tr>
<td>20.3</td>
<td>Mechanisms for the loss of volatile elements from the planetary atmospheres</td>
<td>258</td>
</tr>
<tr>
<td>20.4</td>
<td>Major volatile species: inventories and sources</td>
<td>261</td>
</tr>
<tr>
<td>20.5</td>
<td>Summary</td>
<td>266</td>
</tr>
<tr>
<td>21</td>
<td>Light from the Moon . . .</td>
<td>267</td>
</tr>
<tr>
<td>21.1</td>
<td>Introduction</td>
<td>267</td>
</tr>
<tr>
<td>21.2</td>
<td>Bulk composition and formation of the Moon</td>
<td>268</td>
</tr>
<tr>
<td>21.3</td>
<td>Early lunar crust and mantle</td>
<td>271</td>
</tr>
<tr>
<td>21.4</td>
<td>Early evolution of the lunar mantle and crust</td>
<td>281</td>
</tr>
<tr>
<td>21.5</td>
<td>Summary</td>
<td>286</td>
</tr>
<tr>
<td>Part IV</td>
<td>Global evolution of the Earth</td>
<td>289</td>
</tr>
<tr>
<td>22</td>
<td>First look at the Earth</td>
<td>291</td>
</tr>
<tr>
<td>23</td>
<td>The plate-tectonic concept: some phenomenology</td>
<td>293</td>
</tr>
<tr>
<td>23.1</td>
<td>Major geotectonic units: the plates</td>
<td>293</td>
</tr>
<tr>
<td>23.2</td>
<td>Plate motions: processes on the plate boundaries</td>
<td>294</td>
</tr>
<tr>
<td>23.3</td>
<td>Intraplate magmatism: plumes</td>
<td>297</td>
</tr>
<tr>
<td>23.4</td>
<td>The moving forces of plate tectonics</td>
<td>298</td>
</tr>
<tr>
<td>23.5</td>
<td>Summary: the major terrestrial factories reworking matter</td>
<td>300</td>
</tr>
<tr>
<td>24</td>
<td>Ocean-ridge and island magmatism</td>
<td>301</td>
</tr>
<tr>
<td>24.1</td>
<td>Introduction to anhydrous mantle melting</td>
<td>301</td>
</tr>
<tr>
<td>24.2</td>
<td>Tholeiitic basalts: major products of ocean-ridge magmatism</td>
<td>303</td>
</tr>
<tr>
<td>24.3</td>
<td>Mid-ocean ridge magmatism: evidence from stable trace elements</td>
<td>305</td>
</tr>
</tbody>
</table>
Contents

24.4 Mid-ocean ridge magmatism: evidence from radioactive trace elements 310
24.5 Main features of a MORB melting model: evidence from trace elements and radioactive nuclides 314
24.6 Features specific to ocean-island basaltic magmatism 317
24.7 Summary 319

25 Subduction and island-arc magmatism 321
25.1 Introduction: subduction, associated processes and the crucial role of water 321
25.2 Major-element chemistry of arc magmatic rocks 323
25.3 Trace-element chemistry of primitive arc volcanics 324
25.4 Development of slab rocks during subduction: introduction to metamorphism 331
25.5 Metamorphism in the slab: fluid production and release 335
25.6 Melting of subducting slab: supercritical liquids 338
25.7 Melting in the mantle wedge 339
25.8 Summary 341

26 Composition of the continental crust: magmatic, metamorphic and sedimentary processes 344
26.1 Introduction: the continental crust 344
26.2 The upper continental crust: magmatic rocks 346
26.3 Sedimentary rocks and processes related to them 359
26.4 The lower continental crust: complement to the upper? 365
26.5 The crustal age distribution function 368
26.6 The mean composition of crustal reservoirs 371
26.7 Processes governing crustal mass and composition 372
26.8 Summary 380

27 Isotopic records of the evolution of Earth’s accessible reservoirs 382
27.1 Introduction 382
27.2 The Lu–Hf, Sm–Nd, Rb–Sr and Th–U–Pb isotopic systematics of the mantle 385
27.3 Sources of OIB magmatism 391
27.4 Light rare gases in the mantle 394
27.5 Mantle xenology 399
27.6 Isotopes of Sr, Nd and Pb in the continental crust 403
27.7 Relationships between the Sm–Nd and Lu-Hf isotope families 409
27.8 Isotopic traces from earliest Earth history and evolutionary trends 413
27.9 Evolutionary trends recorded by sedimentary rocks 418
27.10 Summary 425
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>28.1</td>
<td>Introduction to geochemical modelling</td>
<td>427</td>
</tr>
<tr>
<td></td>
<td>28.2</td>
<td>Multireservoir Earth model</td>
<td>428</td>
</tr>
<tr>
<td></td>
<td>28.3</td>
<td>Results: isotope geochemical constraints on Earth’s evolution</td>
<td>432</td>
</tr>
<tr>
<td></td>
<td>28.4</td>
<td>Summary</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td></td>
<td>References</td>
<td>442</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glossary</td>
<td>489</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abbreviations</td>
<td>507</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meteorites, rocks and minerals</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Index</td>
<td>517</td>
</tr>
</tbody>
</table>