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Elementary operator theory

1.1 Banach spaces

In this chapter we collect together material which should be covered in
an introductory course of functional analysis and operator theory. We do
not always include proofs, since there are many excellent textbooks on the
subject.1 The theorems provide a list of results which we use throughout
the book.
We start at the obvious point. A normed space is a vector space � (assumed

to be over the complex number field C) provided with a norm � ·� satisfying

�f� ≥ 0�

�f� = 0 implies f = 0,

��f� = ��� �f��
�f +g� ≤ �f�+�g��

for all � ∈ C and all f� g ∈ �. Many of our definitions and theorems also
apply to real normed spaces, but we will not keep pointing this out. We say
that � · � is a seminorm if it satisfies all of the axioms except the second.
A Banach space is defined to be a normed space � which is complete in

the sense that every Cauchy sequence in � converges to a limit in �. Every
normed space � has a completion �, which is a Banach space in which � is
embedded isometrically anddensely. (An isometric embedding is a linear, norm-
preserving (and hence one-one) map of one normed space into another in which
every element of the first space is identified with its image in the second.)

1 One of the most systematic is [Dunford and Schwartz 1966].
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2 Elementary operator theory

Problem 1.1.1 Prove that the following conditions on a normed space � are
equivalent:

(i) � is complete.
(ii) Every series

∑�
n=1 fn in � such that

∑�
n=1 �fn�<� is norm convergent.

(iii) Every series
∑�

n=1 fn in � such that �fn� ≤ 2−n for all n is norm con-
vergent.

Prove also that any two completions of a normed space � are isometrically
isomorphic. �

The following results from point set topology are rarely used below, but they
provide worthwhile background knowledge. We say that a topological space
X is normal if given any pair of disjoint closed subsets A� B of X there exists
a pair of disjoint open sets U� V such that A ⊆ U and B ⊆ V . All metric
spaces and all compact Hausdorff spaces are normal. The size of the space
of continuous functions on a normal space is revealed by Urysohn’s lemma.

Lemma 1.1.2 (Urysohn)2 If A�B are disjoint closed sets in the normal topo-
logical space X, then there exists a continuous function f � X → �0�1� such
that f�x�= 0 for all x ∈ A and f�x�= 1 for all x ∈ B.

Problem 1.1.3 Use the continuity of the distance function x→ dist�x�A� to
provide a direct proof of Urysohn’s lemma when X is a metric space. �

Theorem 1.1.4 (Tietze) Let S be a closed subset of the normal topological
space X and let f � S → �0�1� be a continuous function. Then there exists
a continuous extension of f to X, i.e. a continuous function g � X → �0�1�
which coincides with f on S.3

Problem 1.1.5 Prove the Tietze extension theorem by using Urysohn’s lemma
to construct a sequence of functions gn � X→ �0�1� which converge uniformly
on X and also uniformly on S to f . �

If K is a compact Hausdorff space then C�K� stands for the space of all
continuous complex-valued functions on K with the supremum norm

�f�� �= sup��f�x�� � x ∈ K	


C�K� is a Banach space with this norm, and the supremum is actually a
maximum. We also use the notation CR�K� to stand for the real Banach space
of all continuous, real-valued functions on K.

2 See [Bollobas 1999], [Simmons 1963, p. 135] or [Kelley 1955, p. 115].
3 See [Bollobas 1999].
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1.1 Banach spaces 3

The following theorem is of interest in spite of the fact that it is rarely useful:
in most applications it is equally evident that all four statements are true (or
false).

Theorem 1.1.6 (Urysohn) If K is a compact Hausdorff space then the fol-
lowing statements are equivalent.

(i) K is metrizable;
(ii) the topology of K has a countable base;
(iii) K can be homeomorphically embedded in the unit cube � �=∏�

n=1�0�1�
of countable dimension;

(iv) the space CR�K� is separable in the sense that it contains a countable
norm dense subset.

The equivalence of the first three statements uses methods of point-set topol-
ogy, for which we refer to [Kelley 1955, p. 125]. The equivalence of the
fourth statement uses the Stone-Weierstrass theorem 2.3.17.

Problem 1.1.7 Without using Theorem 1.1.6, prove that the topological
product of a countable number of compact metrizable spaces is also compact
metrizable. �

We say that � is a Hilbert space if it is a Banach space with respect to a
norm associated with an inner product f� g→	f� g
 according to the formula

�f� �=√	f� f



We always assume that an inner product is linear in the first variable and
conjugate linear in the second variable. We assume familiarity with the basic
theory of Hilbert spaces. Although we do not restrict the statements of many
theorems in the book to separable Hilbert spaces, we frequently only give
the proof in that case. The proof in the non-separable context can usually
be obtained by either of two devices: one may replace the word sequence
by generalized sequence, or one may show that if the result is true on every
separable subspace then it is true in general.

Example 1.1.8 If X is a finite or countable set then l2�X� is defined to be
the space of all functions f � X → C such that

�f�2 �=
√∑

x∈X
�f�x��2 <�


© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86629-3 - Linear Operators and their Spectra
E. Brian Davies
Excerpt
More information

http://www.cambridge.org/0521866294
http://www.cambridge.org
http://www.cambridge.org


4 Elementary operator theory

This is the norm associated with the inner product

	f� g
 �= ∑
x∈X

f�x�g�x��

the sum being absolutely convergent for all f� g ∈ l2�X�. �

A sequence ��n	
�
n=1 in a Hilbert space � is said to be an orthonormal

sequence if

	�m��n
 =
{
1 if m= n,
0 otherwise.

It is said to be a complete orthonormal sequence or an orthonormal basis, if
it satisfies the conditions of the following theorem.

Theorem 1.1.9 The following conditions on an orthonormal sequence ��n	
�
n=1

in a Hilbert space � are equivalent.

(i) The linear span of ��n	
�
n=1 is a dense linear subspace of � .

(ii) The identity

f =
�∑
n=1

	f��n
�n (1.1)

holds for all f ∈� .
(iii) The identity

�f�2 =
�∑
n=1

�	f��n
�2

holds for all f ∈� .
(iv) The identity

	f� g
 =
�∑
n=1

	f��n
 	�n� g


holds for all f� g ∈� , the series being absolutely convergent.

The formula (1.1) is sometimes called a generalized Fourier expansion and
	f��n
 are then called the Fourier coefficients of f . The rate of convergence
in (1.1) depends on f , and is discussed further in Theorem 5.4.12.

Problem 1.1.10 (Haar) Let �vn	
�
n=0 be a dense sequence of distinct numbers

in �0�1� such that v0 = 0 and v1 = 1. Put e1�x� �= 1 for all x ∈ �0�1� and
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1.1 Banach spaces 5

define en ∈ L2�0�1� for n= 2�3� 
 
 
 by

en�x� �=

⎧⎪⎪⎨
⎪⎪⎩

0 if x < un�

�n if un < x < vn�

−n if vn < x < wn�

0 if x > wn�

where

un �=max�vr � r < n and vr < vn	�

wn �=min�vr � r < n and vr > vn	�

and �n > 0, n > 0 are the solutions of

�n�vn−un�−n�wn−vn�= 0�

�vn−un��
2
n+ �wn−vn�

2
n = 1


Prove that �en	
�
n=1 is an orthonormal basis in L2�0�1�. If �vn	

�
n=0 is the

sequence �0�1�1/2�1/4�3/4�1/8�3/8�5/8�7/8�1/16� 
 
 
	 one obtains the
standard Haar basis of L2�0�1�, discussed in all texts on wavelets and of
importance in image processing. If �mr	

�
r=1 is a sequence of integers such that

m1 ≥ 2 and mr is a proper factor of mr+1 for all r, then one may define a gen-
eralized Haar basis of L2�0�1� by concatenating 0� 1� �r/m1	

m1
r=1� �r/m2	

m2
r=1,

�r/m3	
m3
r=1� 
 
 
 and removing duplicated numbers as they arise. �

If X is a set with a �-algebra � of subsets, and dx is a countably additive
�-finite measure on �, then the formula

�f�2 �=
√∫

X
�f�x��2 dx

defines a norm on the space L2�X�dx� of all functions f for which the integral
is finite. The norm is associated with the inner product

	f� g
 �=
∫
X
f�x�g�x�dx


Strictly speaking one only gets a norm by identifying two functions which
are equal almost everywhere. If the integral used is that of Lebesgue, then
L2�X�dx� is complete.4

Notation If � is a Banach space of functions on a locally compact, Hausdorff
space X, then we will always use the notation �c to stand for all those

4 See [Lieb and Loss 1997] for one among many more complete accounts of Lebesgue
integration. See also Section 2.1.
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6 Elementary operator theory

functions in � which have compact support, and �0 to stand for the closure
of �c in �. Also C0�X� stands for the closure of Cc�X� with respect to the
supremum norm; equivalently C0�X� is the space of continuous functions on
X that vanish at infinity. If X is a region in RN then Cn�X� will stand for the
space of n times continuously differentiable functions on X.

Problem 1.1.11 The space L1�a� b� may be defined as the abstract comple-
tion of the space � of piecewise continuous functions on �a� b�, with respect
to the norm

�f�1 �=
∫ b

a
�f�x��dx


Without using any properties of Lebesgue integration prove that Ck�a� b� is
dense in L1�a� b� for every k≥ 0. �

Lemma 1.1.12 A finite-dimensional normed space V is necessarily complete.
Any two norms � · �1 and � · �2 on V are equivalent in the sense that there
exist positive constants a and b such that

a�f�1 ≤ �f�2 ≤ b�f�1 (1.2)

for all f ∈ V .

Problem 1.1.13 Find the optimal values of the constants a and b in (1.2) for
the norms on Cn given by

�f�1 �=
n∑

r=1

�fr �� �f�2 �=
{ n∑
r=1

�fr �2
}1/2


 �

A bounded linear functional � ��→ C is a linear map for which

��� �= sup����f�� � �f� ≤ 1	

is finite. The dual space �∗ of � is defined to be the space of all bounded
linear functionals on �, and is itself a Banach space for the norm given above.
The Hahn-Banach theorem states that if L is any linear subspace of �, then
any bounded linear functional � on L has a linear extension � to � which
has the same norm:

sup����f��/�f� � 0 �= f ∈ L	= sup����f��/�f� � 0 �= f ∈�	


It is not always easy to find a useful representation of the dual space of a
Banach space, but the Hilbert space is particularly simple.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86629-3 - Linear Operators and their Spectra
E. Brian Davies
Excerpt
More information

http://www.cambridge.org/0521866294
http://www.cambridge.org
http://www.cambridge.org


1.1 Banach spaces 7

Theorem 1.1.14 (Fréchet-Riesz)5 If � is a Hilbert space then the formula

��f� �= 	f� g

defines a one-one correspondence between all g ∈� and all � ∈� ∗. More-
over ��� = �g�.

Note The correspondence �↔ g is conjugate linear rather than linear, and
this can cause some confusion if forgotten.

Problem 1.1.15 Prove that if � is a bounded linear functional on the closed
linear subspace � of a Hilbert space� , then there is only one linear extension
of � to � with the same norm. �

The following theorem is not elementary, and we will not use it until Chap-
ter 13.1. The notation CR�K� refers to the real Banach space of continuous
functions f � K → R with the supremum norm.6

Theorem 1.1.16 (Riesz-Kakutani) Let K be a compact Hausdorff space and
let � ∈ CR�K�

∗. If � is non-negative in the sense that ��f� ≥ 0 for all
non-negative f ∈ CR�K� then there exists a non-negative countably additive
measure � on K such that

��f�=
∫
X
f�x���dx�

for all f ∈ CR�K�. Moreover ��� = ��1�= ��K�.

One may reduce the representation of more general bounded linear functionals
to the above special case by means of the following theorem. Given �� � ∈
CR�K�

∗, we write �≥ � if ��f�≥ ��f� for all non-negative f ∈ CR�K�.

Theorem 1.1.17 If K is a compact Hausdorff space and � ∈ CR�K�
∗ then

one may write � �=�+−�− where �± are canonically defined, non-negative,
bounded linear functionals. If ��� �= �+ +�− then ��� ≥ ±�. If � ≥ ±� ∈
CR�K�

∗ then � ≥ ���. Finally � ��� � = ���.
5 See [Dunford and Schwartz 1966, Theorem IV.4.5] for the proof.
6 A combination of the next two theorems is usually called the Riesz representation theorem.
According to [Dunford and Schwartz 1966, p. 380] Riesz provided an explicit representation
of C�0�1�∗. The corresponding theorem for CR�K�

∗, where K is a general compact Hausdorff
space, was obtained some years later by Kakutani. The formula � �= �+ −�− is called the
Jordan decomposition. For the proof of the theorem see [Dunford and Schwartz 1966,
Theorem IV.6.3]. A more abstract formulation, in terms of Banach lattices and AM-spaces, is
given in [Schaefer 1974, Proposition II.5.5 and Section II.7].
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8 Elementary operator theory

Proof. The proof is straightforward but lengthy. Let � �= CR�K�, let �+
denote the convex cone of all non-negative continuous functions on K, and
let �∗

+ denote the convex cone of all non-negative functionals � ∈�∗.
Given � ∈�∗, we define �+ ��+ → R+ by

�+�f� �= sup���f0� � 0 ≤ f0 ≤ f	


If 0 ≤ f0 ≤ f and 0 ≤ g0 ≤ g then

��f0�+��g0�= ��f0+g0�≤ �+�f +g�


Letting f0 and g0 vary subject to the stated constraints, we deduce that

�+�f�+�+�g�≤ �+�f +g�

for all f� g ∈�+.
The reverse inequality is harder to prove. If f� g ∈ �+ and 0 ≤ h ≤ f + g

then one puts f0 �= min�h� f	 and g0 �= h− f0. By considering each point
x ∈ K separately one sees that 0 ≤ f0 ≤ f and 0 ≤ g0 ≤ g. hence

��h�= ��f0�+��g0�≤ �+�f�+�+�g�


Since h is arbitrary subject to the stated constraints one obtains

�+�f +g�≤ �+�f�+�+�g�

for all f� g ∈�+.
We are now in a position to extend �+ to the whole of �. If f ∈� we put

�+�f� �= �+�f +�1�−��+�1�

where � ∈R is chosen so that f +�1≥ 0. The linearity of �+ on �+ implies
that the particular choice of � does not matter subject to the stated constraint.
Our next task is to prove that the extended �+ is a linear functional on �+.

If f� g ∈�, f +�1≥ 0 and g+1≥ 0, then

�+�f +g�=�+�f +g+�1+1�− ��+��+�1�

=�+�f +�1�+�+�g+1�− ��+��+�1�

=�+�f�+�+�g�


It follows immediately from the definition that �+��h� = ��+�h� for all
�≥ 0 and h ∈�+. Hence f ∈� implies

�+��f�= ���f +��1�−���+�1�= ���f +�1�−���+�1�= ��+�f�
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1.1 Banach spaces 9

If � < 0 then

0= �+��f +���f�= �+��f�+�+����f�= �+��f�+����+�f�


Therefore

�+��f�=−����+�f�= ��+�f�


Therefore �+ is a linear functional on �. It is non-negative in the sense
defined above.
We define �− by �− �= �+−�, and deduce immediately that it is linear.

Since f ∈�+ implies that �+�f�≥��f�, we see that �− is non-negative. The
boundedness of �± will be a consequence of the boundedness of ��� and the
formulae

�+ = 1
2 ����+��� �− = 1

2 ����−��


We will need the following formula for ���. If f ∈ �+ then the identity
��� = 2�+−� implies

����f�= 2 sup���f0� � 0 ≤ f0 ≤ f	−��f�

= sup���2f0−f� � 0 ≤ f0 ≤ f	

= sup���f1� �−f ≤ f1 ≤ f	
 (1.3)

The inequality ��� ≥ ±� of the theorem follows from

��� =�+2�− ≥ �

��� = 2�+−� ≥ −�


If � ≥±�, f ≥ 0 and −f ≤ f1 ≤ f then adding the two inequalities ��+ ��

�f − f1� ≥ 0 and ��−���f + f1� ≥ 0 yields ��f� ≥ ��f1�. Letting f1 vary
subject to the stated constraint we obtain ��f�≥ ����f� by using (1.3). There-
fore � ≥ ���.
We finally have to evaluate � ��� �. If f ∈� and � ∈�∗ then

���f�� = ��+�f+�−�+�f−�−�−�f+�+�−�f−��
≤ �+�f+�+�+�f−�+�−�f+�+�−�f−�

= �����f ��
≤ � ��� � � �f � �
= � ��� � �f�


Since f is arbitrary we deduce that ��� ≤ � ��� �.
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10 Elementary operator theory

Conversely suppose that f ∈�. The inequality −�f � ≤ f ≤ �f � implies

−�����f ��≤ ����f�≤ �����f ��

Therefore

� ����f�� ≤ �����f ��
= sup���f1� �−�f � ≤ f1 ≤ �f �	
≤ ��� sup��f1� �−�f � ≤ f1 ≤ �f �	
= ����f�


Hence � ��� � ≤ ���. �

If L is a closed linear subspace of the normed space �, then the quotient space
�/L is defined to be the algebraic quotient, provided with the quotient norm

�f +L� �= inf��f +g� � g ∈ L	


It is known that if � is a Banach space then so is �/L.

Problem 1.1.18 If � = C�a�b� and L is the subspace of all functions in �
which vanish on the closed subset K of �a� b�, find an explicit representation
of �/L and of its norm. �

The Hahn-Banach theorem implies immediately that there is a canonical and
isometric embedding j from � into the second dual space �∗∗ = ��∗�∗,
given by

�jx���� �= ��x�

for all x ∈� and all � ∈�∗. The space � is said to be reflexive if j maps �
one-one onto �∗∗.
We will often use the more symmetrical notation 	x��
 in place of ��x�,

and regard� as a subset of�∗∗, suppressing mention of its natural embedding.

Problem 1.1.19 Prove that � is reflexive if and only if �∗ is reflexive. �

Example 1.1.20 The dual�∗ of a Banach space� is usually not isometrically
isomorphic to � even if � is reflexive. The following provides a large
number of spaces for which they are isometrically isomorphic. We simply
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