
Cambridge University Press
978-0-521-86628-6 — Constraint Logic Programming using Eclipse
Krzysztof R. Apt , Mark Wallace
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Part I

Logic programming paradigm

www.cambridge.org/9780521866286
www.cambridge.org


Cambridge University Press
978-0-521-86628-6 — Constraint Logic Programming using Eclipse
Krzysztof R. Apt , Mark Wallace
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1

Logic programming and pure Prolog

1.1 Introduction 3

1.2 Syntax 4

1.3 The meaning of a program 7

1.4 Computing with equations 9

1.5 Prolog: the first steps 15

1.6 Two simple pure Prolog programs 23

1.7 Summary 26

1.8 Exercises 26

1.1 Introduction

L
OGIC PROGRAMMING (LP in short) is a simple yet powerful for-

malism suitable for computing and for knowledge representation.

It provides a formal basis for Prolog and for constraint logic

programming . Other successful applications of LP include deductive

databases , an extension of relational databases by rules, a computational

approach to machine learning called inductive logic programming , and

a computational account of various forms of reasoning, in particular of non-

monotonic reasoning and meta-reasoning .

The logic programming paradigm substantially differs from other pro-

gramming paradigms. The reason for this is that it has its roots in auto-

mated theorem proving, from which it borrowed the notion of a deduction.

What is new is that in the process of deduction some values are computed.

When stripped to the bare essentials, this paradigm can be summarised by

the following three features:

• any variable can stand for a number or a string, but also a list, a tree, a

record or even a procedure or program,

3

www.cambridge.org/9780521866286
www.cambridge.org


Cambridge University Press
978-0-521-86628-6 — Constraint Logic Programming using Eclipse
Krzysztof R. Apt , Mark Wallace
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 Logic programming and pure Prolog

• during program execution variables are constrained, rather than being

assigned a value and updated,

• program executions include choice points, where computation can take

alternative paths; if the constraints become inconsistent, the program

backtracks to the previous open choice point and tries another path.

In this chapter we discuss the logic programming framework and the cor-

responding small subset of Prolog, usually called pure Prolog . This will

allow us to set up a base over which we shall define in the successive chap-

ters a more realistic subset of Prolog supporting in particular arithmetic and

various control features. At a later stage we shall discuss various additions

to Prolog provided by ECLiPSe, including libraries that support constraint

programming.

We structure the chapter by focussing in turn on each of the above three

items. Also we clarify the intended meaning of pure Prolog programs.1

Consequently, we discuss in turn

• the objects of computation and their syntax,

• the meaning of pure Prolog programs,

• the accumulation of constraints during program execution, and

• the creation of choice points during program execution and backtracking.

1.2 Syntax

Syntactic conventions always play an important role in the discussion of

any programming paradigm and logic programming is no exception in this

matter. In this section we discuss the syntax of Prolog.

Full Prolog syntactic conventions are highly original and very powerful.

Their full impact is little known outside of the logic programming commu-

nity. We shall discuss these novel features in Chapters 3 and 4.

By the ‘objects of computation’ we mean anything that can be denoted

by a Prolog variable. These are not only numbers, lists and so on, but also

compound structures and even other variables or programs.

Formally, the objects of computation are base terms , which consists of:

• variables , denoted by strings starting with an upper case letter or ‘ ’

(the underscore), for example X3 is a variable,

• numbers, which will be dealt with in Chapter 3,

1 To clarify the terminology: logic programs are pure Prolog programs written using the logical
and not Prolog notation. In what follows we rather focus on Prolog notation and, as a result,
on pure Prolog programs.

www.cambridge.org/9780521866286
www.cambridge.org


Cambridge University Press
978-0-521-86628-6 — Constraint Logic Programming using Eclipse
Krzysztof R. Apt , Mark Wallace
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 Syntax 5

• atoms , denoted by sequences of characters starting with a lower case

letter, for example x4 is an atom. Any sequence of characters put between

single quotes, even admitting spaces, is also an atom, for example ’My

Name’,

and compound terms , which comprise a functor and a number of argu-

ments , each of which is itself a (base or compound) term .

By a constant we mean a number or an atom. Special case of terms are

ground terms which are terms in which no variable appears. In general,

the qualification ‘ground’, which we will also use for other syntactic objects,

simply means ‘containing no variables’.

In Chapter 4 we shall explain that thanks to the ambivalent syntax

facility of Prolog programs can also be viewed as compound terms. This

makes it possible to interpret programs as data , which is an important

feature of Prolog.

In the standard syntax for compound terms the functor is written first,

followed by the arguments separated by commas, and enclosed in round

brackets. For example the term with functor f and arguments a, b and c is

written f(a,b,c). Similarly, a more complex example with functor h and

three arguments:

(i) the variable A,

(ii) the compound term f(g,’Twenty’,X),

(iii) the variable X,

is written h(A,f(g,’Twenty’,X),X).

Some compound terms can be also written using an infix notation. Next,

we define goals, queries, clauses and programs. Here is a preliminary overview.

• A program is made up of procedures.

• A procedure is made up of clauses, each terminated by the period ‘.’.

• A clause is either a fact or a rule.

• There is no special procedure such as main and a user activates the pro-

gram by means of a query.

Now we present the details.

• First we introduce an atomic goal which is the basic component from

which the clauses and queries are built. It has a predicate and a number

of arguments. The predicate has a predicate name and a predicate

arity . The predicate name is, syntactically, an atom. The arguments are

placed after the predicate name, separated by commas and surrounded by

round brackets. The number of arguments is the arity of the predicate.

www.cambridge.org/9780521866286
www.cambridge.org


Cambridge University Press
978-0-521-86628-6 — Constraint Logic Programming using Eclipse
Krzysztof R. Apt , Mark Wallace
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 Logic programming and pure Prolog

An example of an atomic goal is p(a,X). Here the predicate name is p

and its arity is 2. We often write p/n for the predicate with name p and

arity n.

• A query (or a goal) is a sequence of atomic goals terminated by the

period ‘.’. A query is called atomic if it consists of exactly one atomic

goal.

• A rule comprises a head , which is an atomic goal, followed by ‘:-’,

followed by the body which is a non-empty query, and is terminated by

the period ‘.’.

An example of a rule is

p(b,Y) :- q(Y), r(Y,c).

A rule contributes to the definition of the predicate of its head, so this

example rule contributes to the definition of p/2. We also call this a

rule for p/2. Rule bodies may contain some atomic goals with a binary

predicate and two arguments written in the infix form, for example X =

a, whose predicate is =/2.

• A fact is an atomic goal terminated by the period ‘.’. For example

p(a,b).

is a fact. This fact also contributes to the definition of p/2.

• A sequence of clauses for the same predicate makes a procedure. The

procedure provides a definition for the predicate.

For example, here is a definition for the predicate p/2:

p(a,b).

p(b,Y) :- q(Y), r(Y,c).

• A pure Prolog program is a finite sequence of procedures, for example

p(a,b).

p(b,Y) :- q(Y), r(Y,c).

q(a).

r(a,c).

So a program is simply a sequence of clauses.

In what follows, when discussing specific queries and rules in a running

text we shall drop the final period ‘.’.

Before leaving this discussion of the syntax of pure Prolog, we point out a

small but important feature of variable naming. If a variable appears more

than once in a query (or similarly, more than once in a program clause), then

www.cambridge.org/9780521866286
www.cambridge.org


Cambridge University Press
978-0-521-86628-6 — Constraint Logic Programming using Eclipse
Krzysztof R. Apt , Mark Wallace
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.3 The meaning of a program 7

each occurrence denotes the same object of computation. However, Prolog

also allows so-called anonymous variables, written as ‘ ’ (underscore).

These variables have a special interpretation, because each occurrence of

‘ ’ in a query or in a clause is interpreted as a different variable. That is

why we talk about the anonymous variables and not about the anonymous

variable. So by definition each anonymous variable occurs in a query or a

clause only once.

Anonymous variables form a simple and elegant device and, as we shall

see, their use increases the readability of programs in a remarkable way.

ECLiPSe and many modern versions of Prolog encourage the use of anony-

mous variables by issuing a warning if a non-anonymous variable is encoun-

tered that occurs only once in a clause. This warning can be suppressed

by using a normal variable that starts with the underscore symbol ‘ ’, for

example _X.

Prolog has several (about one hundred) built-in predicates, so predicates

with a predefined meaning. The clauses, the heads of which refer to these

built-in predicates, are ignored. This ensures that the built-in predicates

cannot be redefined. Thus one can rely on their prescribed meaning. In

ECLiPSe and several versions of Prolog a warning is issued in case an at-

tempt at redefining a built-in predicate is encountered.

So much about Prolog syntax for a moment. We shall return to it in

Chapters 3 and 4 where we shall discuss several novel and powerful features

of Prolog syntax.

1.3 The meaning of a program

Pure Prolog programs can be interpreted as statements in the first-order

logic. This interpretation makes it easy to understand the behaviour of a

program. In particular, it will help us to understand the results of evaluating

a query w.r.t. to a program. In the remainder of this section we assume that

the reader is familiar with the first-order logic.

Let us start by interpreting a simple program fact, such as p(a,b). It

contributes to the definition of the predicate p/2. Its arguments are two

atoms, a and b.

We interpret the predicate p/2 as a relation symbol p of arity 2. The

atoms a and b are interpreted as logical constants a and b. A logical con-

stant denotes a value. Since, in the interpretation of pure Prolog programs,

different constants denote different values, we can think of each constant

denoting itself. Consequently we interpret the fact p(a,b) as the atomic

formula p(a, b).

www.cambridge.org/9780521866286
www.cambridge.org


Cambridge University Press
978-0-521-86628-6 — Constraint Logic Programming using Eclipse
Krzysztof R. Apt , Mark Wallace
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 Logic programming and pure Prolog

The arguments of facts may also be variables and compound terms. Con-

sider for example the fact p(a,f(b)). The interpretation of the compound

term f(b) is a logical expression, in which the unary function f is applied

to the logical constant b. Under the interpretation of pure Prolog programs,

the denotations of any two distinct ground terms are themselves distinct.2

Consequently we can think of ground terms as denoting themselves, and so

we interpret the fact p(a,f(b)) as the atomic formula p(a, f(b)).

The next fact has a variable argument: p(a,Y). We view it as a statement

that for all ground terms t the atomic formula p(a, t) is true. So we interpret

it as the universally quantified formula ∀Y. p(a, Y ).

With this interpretation there can be no use in writing the procedure

p(a,Y).

p(a,b).

because the second fact is already covered by the first, more general fact.

Finally we should mention that facts with no arguments are also admit-

ted. Accordingly we can assert the fact p. Its logical interpretation is the

proposition p.

In general, we interpret a fact by simply changing the font from teletype

to italic and by preceding it by the universal quantification of all variables

that appear in it.

The interpretation of a rule involves a logical implication . For example

the rule

p :- q.

states that if q is true then p is true.

As another example, consider the ground rule

p(a,b) :- q(a,f(c)), r(d).

Its interpretation is as follows. If q(a, f(c)) and r(d) are both true, then

p(a, b) is also true, i.e., q(a, f(c)) ∧ r(d) → p(a, b).

Rules with variables need a little more thought. The rule

p(X) :- q.

states that if q is true, then p(t) is true for any ground term t. So logically

this rule is interpreted as q → ∀X. p(X). This is equivalent to the formula

∀X. (q → p(X)).

If the variable in the head also appears in the body, the meaning is the

same. The rule
2 This will no longer hold for arithmetic expressions which will be covered in Chapter 3.

www.cambridge.org/9780521866286
www.cambridge.org


Cambridge University Press
978-0-521-86628-6 — Constraint Logic Programming using Eclipse
Krzysztof R. Apt , Mark Wallace
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.4 Computing with equations 9

p(X) :- q(X).

states that for any ground term t, if q(t) is true, then p(t) is also true.

Therefore logically this rule is interpreted as ∀X. (q(X) → p(X)).

Finally, we consider rules in which variables appear in the body but not

in the head, for example

p(a) :- q(X).

This rule states that if we can find a ground term t for which q(t) is true,

then p(a) is true. Logically this rule is interpreted as ∀X. (q(X) → p(a)),

which is equivalent to the formula (∃X. q(X)) → p(a).

Given an atomic goal A denote its interpretation by Ã. Any ground rule H

:- B1, . . . , Bn is interpreted as the implication B̃1∧. . .∧B̃n → H̃. In general,

all rules H :- B1, . . . , Bn have the same, uniform, logical interpretation. If

V is the list of the variables appearing in the rule, its logical interpretation

is ∀V. (B̃1 ∧ . . . ∧ B̃n → H̃).

This interpretation of ‘,’ (as ∧) and ‘:-’ (as →) leads to so-called declara-

tive interpretation of pure Prolog programs that focusses – through their

translation to the first-order logic – on their semantic meaning.

The computational interpretation of pure Prolog is usually called pro-

cedural interpretation . It will be discussed in the next section. In this

interpretation the comma ‘,’ separating atomic goals in a query or in a body

of a rule is interpreted as the semicolon symbol ‘;’ of the imperative program-

ming and ‘:-’ as (essentially) the separator between the procedure header

and body.

1.4 Computing with equations

We defined in Section 1.2 the computational objects over which computa-

tions of pure Prolog programs take place. The next step is to explain how

variables and computational objects become constrained to be equal to each

other, in the form of the answers. This is the closest that logic programming

comes to assigning values to variables.

1.4.1 Querying pure Prolog programs

The computation process of pure Prolog involves a program P against which

we pose a query Q. This can lead to a successful, failed or diverging com-

putation (which of course we wish to avoid).

A successful computation yields an answer, which specifies constraints on

the query variables under which the query is true. In this subsection we

www.cambridge.org/9780521866286
www.cambridge.org


Cambridge University Press
978-0-521-86628-6 — Constraint Logic Programming using Eclipse
Krzysztof R. Apt , Mark Wallace
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 Logic programming and pure Prolog

describe how these constraints are accumulated during query processing. In

the next subsection we will describe how the constraints are checked for

consistency and answers are extracted from them.

The constraints accumulated by Prolog are equations whose conjunction

logically entails the truth of the query. To clarify the discussion we will use

the following simple program:

p(X) :- q(X,a).

q(Y,Y).

Let us first discuss the answer to the atomic query

q(W,a).

The definition of the predicate q/2 comprises just the single fact q(Y,Y).

Clearly the query can only succeed if W = a.

Inside Prolog, however, this constraint is represented as an equation be-

tween two atomic goals: q(W,a) = q(Y1,Y1). The atomic goal q(W,a) at

the left-hand side of the equation is just the original query. For the fact

q(Y,Y), however, a new variable Y1 has been introduced. This is not im-

portant for the current example, but it is necessary in general because of

possible variable clashes. This complication is solved by using a different

variable each time. Accordingly, our first query succeeds under the con-

straint q(W,a) = q(Y1,Y1).

Now consider the query

p(a).

This time we need to use a rule instead of a fact. Again a new variable is

introduced for each use of the rule, so this first time it becomes:

p(X1) :- q(X1,a).

To answer this query, Prolog first adds the constraint p(a) = p(X1),

which constrains the query to match the definition of p/1. Further, the

query p(a) succeeds only if the body q(X1,a) succeeds, which it does un-

der the additional constraint q(X1,a) = q(Y1,Y1). The complete sequence

of constraints under which the query succeeds is therefore p(a) = p(X1),

q(X1,a) = q(Y1,Y1). Informally we can observe that these constraints hold

if all the variables take the value a.

Consider now the query:

p(b).

www.cambridge.org/9780521866286
www.cambridge.org


Cambridge University Press
978-0-521-86628-6 — Constraint Logic Programming using Eclipse
Krzysztof R. Apt , Mark Wallace
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.4 Computing with equations 11

Reasoning as before, we find the query would succeed under the constraints:

p(b) = p(X1), q(X1,a) = q(Y1,Y1). In this case, however, there are no

possible values for the variables which would satisfy these constraints. Y1

would have to be equal both to a and to b, which is impossible. Consequently

the query fails.

Next consider a non-atomic query

p(a), q(W,a).

The execution of this query proceeds in two stages. First, as we already saw,

p(a) succeeds under the constraints p(a) = p(X1), q(X1,a) = q(Y1,Y1),

and secondly q(W,a) succeeds under the constraint q(W,a) = q(Y2,Y2).

The complete sequence of constraints is therefore: p(a) = p(X1), q(X1,a)

= q(Y1,Y1), q(W,a) = q(Y2,Y2). Informally these constraints are satis-

fied if all the variables take the value a.

A failing non-atomic query is:

p(W), q(W,b).

Indeed, this would succeed under the constraints p(W) = p(X1), q(X1,a)

= q(Y1,Y1), q(W,b) = q(Y2,Y2). However, for this to be satisfied W would

have to take both the value a (to satisfy the first two equations) and b (to

satisfy the last equation), so the constraints cannot be satisfied and the

query fails.

Operationally, the constraints are added to the sequence during compu-

tation, and tested for consistency immediately. Thus the query

p(b), q(W,b).

fails already during the evaluation of the first atomic query, because already

at this stage the accumulated constraints are inconsistent. Consequently the

second atomic query is not evaluated at all.

1.4.2 Most general unifiers

The Prolog system has a built-in algorithm which can detect whether a

sequence of equations between atomic goals is consistent or not. In general,

two outcomes are possible. Either the algorithm returns a failure, because

some atomic goals cannot be made equal (for example p(X,a) = p(b,X)),

or it yields a positive answer in the form of a substitution , which is a set

of equations of the form Variable = Term such that each variable occurs at

most once at a left-hand side of an equation. The resulting set of equations

is called a unifier .

www.cambridge.org/9780521866286
www.cambridge.org

