
1

Review of formal languages
and automata theory

In this chapter we review material from a first course in the theory of computing.
Much of this material should be familiar to you, but if not, you may want to
read a more leisurely treatment contained in one of the texts suggested in the
notes (Section 1.12).

1.1 Sets

A set is a collection of elements chosen from some domain. If S is a finite
set, we use the notation |S| to denote the number of elements or cardinality of
the set. The empty set is denoted by ∅. By A∪ B (respectively A∩ B, A − B)
we mean the union of the two sets A and B (respectively intersection and set
difference). The notation A means the complement of the set A with respect
to some assumed universal set U ; that is, A = {x ∈ U : x �∈ A}. Finally, 2A

denotes the power set, or set of all subsets, of A.
Some special sets that we talk about include N = {0, 1, 2, 3, . . .}, the natural

numbers, and Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, the integers.

1.2 Symbols, strings, and languages

One of the fundamental mathematical objects we study in this book is the string.
In the literature, a string is sometimes called a word or sentence. A string is
made up of symbols (or letters). (We treat the notion of symbol as primitive
and do not define it further.) A nonempty set of symbols is called an alphabet
and is often denoted by �; in this book, � will almost always be finite. An
alphabet is called unary if it consists of a single symbol. We typically denote
elements of � by using the lowercase italic letters a, b, c, d.

1

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86572-2 - A Second Course in Formal Languages and Automata Theory
Jeffrey Shallit
Excerpt
More information

http://www.cambridge.org/9780521865722
http://www.cambridge.org
http://www.cambridge.org

2 1 Review of formal languages and automata theory

A string is a finite or infinite list of symbols chosen from �. The symbols
themselves are usually written using the typewriter font. If unspecified, a
string is assumed to be finite. We typically use the lowercase italic letters
s, t, u, v,w, x, y, z to represent finite strings. We denote the empty string by
ε. The set of all finite strings made up of letters chosen from � is denoted by
�∗. For example, if � = {a, b}, then �∗ = {ε, a, b, aa, ab, ba, bb, aaa, . . .}.
Note that �∗ does not contain infinite strings. By �+ for an alphabet �, we
understand �∗ − {ε}, the set of all nonempty strings over �.

If w is a finite string, then its length (the number of symbols it contains)
is denoted by |w|. (There should be no confusion with the same notation used
for set cardinality.) For example, if w = five, then |w| = 4. Note that |ε| = 0.
We can also count the number of occurrences of a particular letter in a string.
If a ∈ � and w ∈ �∗, then |w|a denotes the number of occurrences of a in w.
Thus, for example, if w = abbab, then |w|a = 2 and |w|b = 3.

We say a string y is a subword of a string w if there exist strings x, z such
that w = xyz. We say x is a prefix of w if there exists y such that w = xy. The
prefix is proper if y �= ε and nontrivial if x �= ε. For example, if w = antsy,
then the set of prefixes of w is {ε, a, an, ant, ants, antsy} (see Exercise 4).
The set of proper prefixes of w is {ε, a, an, ant, ants}, and the set of nontrivial
prefixes of w is {a, an, ant, ants, antsy}.

Similarly, we say that z is a suffix of w if there exists y such that w = yz.
The suffix is proper if y �= ε and nontrivial if z �= ε.

We say that x is a subsequence of y if we can obtain x by striking out 0 or
more letters from y. For example, gem is a subsequence of enlightenment.

If w = a1a2 · · · an, then for 1 ≤ i ≤ n, we define w[i] = ai . If 1 ≤ i ≤ n

and i − 1 ≤ j ≤ n, we define w[i..j] = aiai+1 · · · aj . Note that w[i..i] = ai

and w[i..i − 1] = ε.
If w = ux, we sometimes write x = u−1w and u = wx−1.
Now we turn to sets of strings. A language over � is a (finite or infinite) set

of strings—in other words, a subset of �∗.

Example 1.2.1. The following are examples of languages:

PRIMES2 = {10, 11, 101, 111, 1011, 1101, 10001, . . .} (the primes represen-

ted in base 2)

EQ = {x ∈ {0, 1}∗ : |x|0 = |x|1} (strings containing an equal number

of each symbol)

= {ε, 01, 10, 0011, 0101, 0110, 1001, 1010, 1100, . . .}
EVEN= {x ∈{0, 1}∗ : |x|0 ≡0 (mod 2)} (strings with an even number of 0s)

SQ = {xx : x ∈ {0, 1}∗} (the language of squares)

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86572-2 - A Second Course in Formal Languages and Automata Theory
Jeffrey Shallit
Excerpt
More information

http://www.cambridge.org/9780521865722
http://www.cambridge.org
http://www.cambridge.org

1.3 Regular expressions and regular languages 3

Given a language L ⊆ �∗, we may consider its prefix and suffix languages.
We define

Pref(L) = {x ∈ �∗ : there exists y ∈ L such that x is a prefix of y};
Suff(L) = {x ∈ �∗ : there exists y ∈ L such that x is a suffix of y}.
One of the fundamental operations on strings is concatenation. We concate-

nate two finite strings w and x by juxtaposing their symbols, and we denote
this by wx. For example, if w = book and x = case, then wx = bookcase.
Concatenation of strings is, in general, not commutative; for example, we have
xw = casebook. However, concatenation is associative: we have w(xy) =
(wx)y for all strings w, x, y.

In general, concatenation is treated notationally like multiplication, so that,
for example, wn denotes the string www · · · w (n times).

If w = a1a2 · · · an and x = b1b2 · · · bn are finite words of the same length,
then by wXx we mean the word a1b1a2b2 · · · anbn, the perfect shuffle of w and
x. For example, shoeX cold = schooled, and clipX aloe = calliope,
and (appropriately for this book) termX hoes = theorems.

If w = a1a2 · · · an is a finite word, then by wR we mean the reversal of the
word w; that is, wR = anan−1 · · · a2a1. For example, (drawer)R = reward.
Note that (wx)R = xRwR . A word w is a palindrome if w = wR . Examples
of palindromes in English include radar, deified, rotator, repaper, and
redivider.

We now turn to orders on strings. Given a finite alphabet �, we can impose an
order on the elements. For example, if � = �k = {0, 1, 2, . . . , k − 1}, for some
integer k ≥ 2, then 0 < 1 < 2 < · · · < k − 1. Suppose w, x are equal-length
strings over �. We say that w is lexicographically smaller than x, and write w <

x, if there exist strings z,w′, x ′ and letters a, b such that w = zaw′, x = zbx ′,
and a < b. Thus, for example, trust < truth. We can extend this order to the
radix order defined as follows: w < x if |w| < |x|, or |w| = |x| and w precedes
x in lexicographic order. Thus, for example, rat < moose in radix order.

1.3 Regular expressions and regular languages

As we have seen earlier, a language over � is a subset of �∗. Languages may be
of finite or infinite cardinality. We start by defining some common operations
on languages.

Let L,L1, L2 ⊆ �∗ be languages. We define the product or concatenation
of languages by

L1L2 = {wx : w ∈ L1, x ∈ L2}.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86572-2 - A Second Course in Formal Languages and Automata Theory
Jeffrey Shallit
Excerpt
More information

http://www.cambridge.org/9780521865722
http://www.cambridge.org
http://www.cambridge.org

4 1 Review of formal languages and automata theory

Common Error 1.3.1. Note that the definition of language concatenation
implies that L∅ = ∅L = ∅. Many students mistakenly believe that L∅ = L.

We define L0 = {ε} and define Li as LLi−1 for i ≥ 1. We define

L≤i = L0 ∪ L1 ∪ · · · ∪ Li.

We define L∗ as
⋃

i≥0 Li ; the operation L∗ is sometimes called Kleene
closure. We define L+ = LL∗; the operation + in the superscript is sometimes
called positive closure. If L is a language, then the reversed language is defined
as follows: LR = {xR : x ∈ L}.

We now turn to a common notation for representing some kinds of languages.
A regular expression over the base alphabet � is a well-formed string over
the larger alphabet � ∪ A, where A = {ε, ∅, (,), +, *}; we assume
� ∩ A = ∅. In evaluating such an expression, * represents Kleene closure and
has highest precedence. Concatenation is represented by juxtaposition, and has
next highest precedence. Finally, + represents union and has lowest precedence.
Parentheses are used for grouping. A formal definition of regular expressions
is given in Exercise 33.

If the word u is a regular expression, then L(u) represents the language
that u is shorthand for. For example, consider the regular expression u =
(0 + 10)*(1 + ε). Then L(u) represents all finite words of 0s and 1s that do not
contain two consecutive 1s. Frequently we will abuse the notation by referring
to the language as the naked regular expression without the surrounding L().
A language L is said to be regular if L = L(u) for some regular expres-
sion u.

1.4 Finite automata

A deterministic finite automaton, or DFA for short, is the simplest model of a
computer. We imagine a finite control equipped with a read head and a tape,
divided into cells, which holds a finite input. At each step, depending on the
machine’s internal state and the current symbol being scanned, the machine
can change its internal state and move right to the next square on the tape.
If, after scanning all the cells of the input the machine is in any one of a
number of final states, we say the input is accepted; otherwise it is rejected (see
Figure 1.1).

Formally, a DFA is a 5-tuple (Q,�, δ, q0, F), where

• Q is a finite nonempty set of states;
• � is a finite nonempty input alphabet;
• δ : Q × � → Q is a transition function;

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86572-2 - A Second Course in Formal Languages and Automata Theory
Jeffrey Shallit
Excerpt
More information

http://www.cambridge.org/9780521865722
http://www.cambridge.org
http://www.cambridge.org

1.4 Finite automata 5

Finite
control

i n p u t

Figure 1.1: A deterministic finite automaton

• q0 ∈ Q is the start or initial state;
• F ⊆ Q is the set of final states.

The transition function δ can be extended to a transition function δ∗ : Q ×
�∗ → Q as follows:

• δ∗(q, ε) = q for all q ∈ Q;
• δ∗(q, xa) = δ(δ∗(q, x), a) for all q ∈ Q, x ∈ �∗, and a ∈ �.

Since δ∗ agrees with δ on the domain of δ, we often just write δ for δ∗.
Now we give the formal definition of L(M), the language accepted by a

DFA M . We have

L(M) = {x ∈ �∗ : δ(q0, x) ∈ F }.
We often describe deterministic finite automata by providing a transition

diagram. This is a directed graph where states are represented by circles, final
states represented by double circles, the initial state is labeled by a headless
arrow entering a state, and transitions represented by directed arrows, labeled
with a letter. For example, the transition diagram in Figure 1.2 represents the
DFA that accepts the language EVEN = {x ∈ {0, 1}∗ : |x|0 ≡ 0 (mod 2)}.

Representation as a transition diagram suggests the following natural gener-
alization of a DFA: we allow the automaton to have multiple choices (or none
at all) on what state to enter on reading a given symbol. We accept an input if
and only if some sequence of choices leads to a final state. For example, the

0

0

1 1

q 10
q

Figure 1.2: Transition diagram for a DFA

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86572-2 - A Second Course in Formal Languages and Automata Theory
Jeffrey Shallit
Excerpt
More information

http://www.cambridge.org/9780521865722
http://www.cambridge.org
http://www.cambridge.org

6 1 Review of formal languages and automata theory

0, 1

1 0, 1 0, 1 0, 1

q q q q q1 2 3 40

Figure 1.3: Transition diagram for an NFA

transition diagram in Figure 1.3 represents a nondeterministic finite automaton
(NFA) that accepts the language L4, where

Ln := {x ∈ {0, 1}∗ : the nth symbol from the right is 1}.
It is possible to show that the smallest DFA accepting Ln has at least 2n states

(see Exercise 3.14), so NFAs, while accepting the same class of languages as
DFAs, can be exponentially more concise.

Formally, an NFA is a 5-tuple M = (Q,�, δ, q0, F), where δ : Q × � →
2Q. We define the extended transition function δ∗ by

• δ∗(q, ε) = {q};
• δ∗(q, xa) = ⋃

r∈δ∗(q,x) δ(r, a).

The language accepted by an NFA, L(M), is then given by

L(M) = {x ∈ �∗ : δ∗(q0, x) ∩ F �= ∅}.
The following theorem shows that NFAs accept exactly the regular lan-

guages.

Theorem 1.4.1. If M is an NFA, then there exists a DFA M ′ such that L(M) =
L(M ′).

Proof Idea. We let the states of M ′ be all subsets of the state set of M . The
final states of M ′ are those subsets containing at least one final state of M .

Exercise 31 asks you to show that the subset construction for NFA-to-DFA
conversion can be carried out in O(kn2n) time, where k = |�| and n = |Q|.

Yet another generalization of DFA is to allow the DFA to change state spon-
taneously without consuming a symbol of the input. This can be represented in a
transition diagram by allowing arrows labeled ε, which are called ε-transitions.
An NFA-ε is a 5-tuple M = (Q,�, δ, q0, F), where δ : Q × (� ∪ {ε}) → 2Q.

The most important theorem on regular languages is Kleene’s theorem:

Theorem 1.4.2. The following language classes are identical:

(a) the class of languages specified by regular expressions;
(b) the class of languages accepted by DFAs;

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86572-2 - A Second Course in Formal Languages and Automata Theory
Jeffrey Shallit
Excerpt
More information

http://www.cambridge.org/9780521865722
http://www.cambridge.org
http://www.cambridge.org

1.4 Finite automata 7

(c) the class of languages accepted by NFAs;
(d) the class of languages accepted by NFA-ε’s.

As a corollary, we can deduce some important closure properties of regular
languages. We say a class of languages is closed under an operation if whenever
the arguments to the operation are in the class, the result is also. If there are
any counterexamples at all, we say the class is not closed.

Corollary 1.4.3. The class of regular languages is closed under the operations
of union, concatenation, Kleene ∗, and complement.

The pumping lemma is an important tool for proving that certain languages
are not regular.

Lemma 1.4.4. Suppose L is a regular language. Then there exists a constant
n ≥ 1, depending on L, such that for all z ∈ L with |z| ≥ n, there exists a
decomposition z = uvw with |uv| ≤ n and |v| ≥ 1 such that uviw ∈ L for all
i ≥ 0. In fact, we may take n to be the number of states in any DFA accept-
ing L.

Proof Idea. The basic idea of the proof is that the path through the transition
diagram for any sufficiently long accepted word must contain a loop. We may
then go around this loop any number of times to obtain an infinite number of
accepted words of the form uviw.

Example 1.4.5. Let us show that the language

PRIMES1 = {a2, a3, a5, . . .},
the prime numbers represented in unary, is not regular. Let n be the pumping
lemma constant, and choose a prime p > n; we know such a prime exists
by Euclid’s theorem that there are infinitely many primes. Let z = ap. Then
there exists a decomposition z = uvw with |uv| ≤ n and |v| ≥ 1 such that
uviw ∈ PRIMES1 for all i ≥ 0. Suppose |v| = r . Then choose i = p + 1. We
have |uviw| = p + (i − 1)r = p(r + 1). Since r ≥ 1, this number is not a
prime, a contradiction.

Example 1.4.6. Here is a deeper application of the pumping lemma. Let us
show that the language

PRIMES2 = {10, 11, 101, 111, 1011, 1101, 10001, . . .},
the prime numbers represented in binary, is not regular. Let n be the pumping
lemma constant and p be a prime p > 2n. Let z be the base-2 representation

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86572-2 - A Second Course in Formal Languages and Automata Theory
Jeffrey Shallit
Excerpt
More information

http://www.cambridge.org/9780521865722
http://www.cambridge.org
http://www.cambridge.org

8 1 Review of formal languages and automata theory

of p. If t is a string of 0s and 1s, let [t]2 denote the integer whose base-2
representation is given by t . Write z = uvw. Now

[z]2 = [u]22|vw| + [v]22|w| + [w]2,

while

[uviw]2 = [u]22i|v|+|w| + [v]2(2|w| + 2|vw| + · · · + 2|vi−1w|) + [w]2.

Now 2|w| + 2|vw| + · · · + 2|vi−1w| is, by the sum of a geometric series, equal
to 2|w| 2i|v|−1

2|v|−1 . Now by Fermat’s theorem, 2p ≡ 2 (mod p) if p is a prime.
Hence, setting i = p, we get [uvpw]2 − [uvw]2 ≡ 0 (mod p). But since z has
no leading zeroes, [uvpw]2 > [uvw]2 = p. (Note that 2|v| − 1 �≡ 0 (mod p)
since |v| ≥ 1 and |uv| ≤ n ⇒ 2|v| ≤ 2n < p.) It follows that [uvpw]2 is an
integer larger than p that is divisible by p, and so cannot represent a prime
number. Hence, uvpw �∈ PRIMES2. This contradiction proves that PRIMES2 is
not regular.

1.5 Context-free grammars and languages

In the previous section, we saw two of the three important ways to specify
languages: namely, as the language accepted by a machine or the language
specified by a regular expression. In this section, we explore a third important
way, the grammar. A machine receives a string as input and processes it, but a
grammar actually constructs a string iteratively through a number of rewriting
rules. We focus here on a particular kind of grammar, the context-free grammar
(CFG).

Example 1.5.1. Consider the CFG given by the following production rules:

S → a

S → b

S → aSa

S → bSb.

The intention is to interpret each of these four rules as rewriting rules. We
start with the symbol S and can choose to replace it by any of a, b, aSa, bSb.
Suppose we replace S by aSa. Now the resulting string still has an S in it, and
so we can choose any one of four strings to replace it. If we choose the rule
S → bSb, we get abSba. Now if we choose the rule S → b, we get the string
abbba, and no more rules can be performed.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86572-2 - A Second Course in Formal Languages and Automata Theory
Jeffrey Shallit
Excerpt
More information

http://www.cambridge.org/9780521865722
http://www.cambridge.org
http://www.cambridge.org

1.5 Context-free grammars and languages 9

It is not hard to see that the language generated by this process is the set of
palindromes over {a, b} of odd length, which we call ODDPAL.

Example 1.5.2. Here is a somewhat harder example. Let us create a CFG to
generate the nonpalindromes over {a, b}.

S → aSa | bSb | aT b | bT a
T → aT a | aT b | bT a | bT b | ε | a | b.

The basic idea is that if a string is a nonpalindrome, then there must be at
least one position such that the character in that position does not match the
character in the corresponding position from the end. The productions S → aSa

and S → bSb are used to generate a prefix and suffix that match properly, but
eventually one of the two productions involving T on the right-hand side must
be used, at which point a mismatch is introduced. Now the remaining symbols
can either match or not match, which accounts for the remaining productions
involving T .

Example 1.5.3. Finally, we conclude with a genuinely challenging example.
Consider the language

L = {x ∈ {0, 1}∗ : x is not of the form ww} = SQ

= {0, 1, 01, 10, 000, 001, 010, 011, 100, 101, 110, 111, 0001, 0010,
0011, 1000, . . .}.

Exercise 25 asks you to prove that this language can be generated by the
following grammar:

S → AB | BA | A | B

A → 0A0 | 0A1 | 1A0 | 1A1 | 0
B → 0B0 | 0B1 | 1B0 | 1B1 | 1.

Formally, we define a CFG G to be a 4-tuple G = (V,�, P, S), where V

is a nonempty finite set of variables, � is a nonempty finite set of terminal
symbols, P is a finite set of productions of the form A → α, where A ∈ V and
α ∈ (V ∪ �)∗ (i.e., a finite subset of V × (V ∪ �)∗), and S is a distinguished
element of V called the start symbol. We require that V ∩ � = ∅. The term
context-free comes from the fact that A may be replaced by α, independent of
the context in which A appears.

A sentential form is any string of variables and terminals. We can go from
one sentential form to another by applying a rule of the grammar. Formally,
we write αBγ =⇒ αβγ if B → β is a production of P . We write

∗=⇒ for the

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86572-2 - A Second Course in Formal Languages and Automata Theory
Jeffrey Shallit
Excerpt
More information

http://www.cambridge.org/9780521865722
http://www.cambridge.org
http://www.cambridge.org

10 1 Review of formal languages and automata theory

reflexive, transitive closure of =⇒. In other words, we write α
∗=⇒ β if there

exist sentential forms α = α0, α1, . . . , αn = β such that

α0 =⇒ α1 =⇒ α2 =⇒ · · · =⇒ αn.

A derivation consists of 0 or more applications of =⇒ to some sentential form.
If G is a CFG, then we define

L(G) = {x ∈ �∗ : S
∗=⇒ x}.

A leftmost derivation is a derivation in which the variable replaced at each
step is the leftmost one. A rightmost derivation is defined analogously. A
grammar G is said to be unambiguous if every word w ∈ L(G) has exactly one
leftmost derivation and ambiguous otherwise.

A parse tree or derivation tree for w ∈ L(G) is an ordered tree T where
each vertex is labeled with an element of V ∪ � ∪ {ε}. The root is labeled
with a variable A and the leaves are labeled with elements of � or ε. If a node
is labeled with A ∈ V and its children are (from left to right) X1, X2, . . . , Xr ,
then A → X1X2 · · ·Xr is a production of G. The yield of the tree is w and
consists of the concatenation of the leaf labels from left to right.

Theorem 1.5.4. A grammar is unambiguous if and only if every word generated
has exactly one parse tree.

The class of languages generated by CFGs is called the context-free lan-
guages (CFLs).

We now recall some basic facts about CFGs. First, productions of the form
A → ε are called ε-productions and productions of the form A → B unit
productions. There is an algorithm to transform a CFG G into a new grammar
G′ without ε-productions or unit productions, such that L(G′) = L(G) − {ε}
(see Exercise 27). Furthermore, it is possible to carry out this transformation
in such a way that if G is unambiguous, G′ is also.

We say a grammar is in Chomsky normal form if every production is of
the form A → BC or A → a, where A,B,C are variables and a is a single
terminal. There is an algorithm to transform a grammar G into a new grammar
G′ in Chomsky normal form, such that L(G′) = L(G) − {ε}; (see Exercise 28).

We now recall a basic result about CFLs, known as the pumping lemma.

Theorem 1.5.5. If L is context-free, then there exists a constant n such that for
all z ∈ L with |z| ≥ n, there exists a decomposition z = uvwxy with |vwx| ≤ n

and |vx| ≥ 1 such that for all i ≥ 0, we have uviwxiy ∈ L.

Proof Idea. If L is context-free, then we can find a Chomsky normal form
grammar G generating L − {ε}. Let n = 2k , where k is the number of variables

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86572-2 - A Second Course in Formal Languages and Automata Theory
Jeffrey Shallit
Excerpt
More information

http://www.cambridge.org/9780521865722
http://www.cambridge.org
http://www.cambridge.org

