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Imagine you could shrink into the atomic world. On this small scale, motion is
violent and chaotic. Atoms shake and dance wildly, and each carries an electron
cloud that is a blur of motion. By contrast, the behavior of a very large number
of atoms, such as a baseball or planet, is quite sedate. Their positions, motions,
and properties change continuously yet predictably. How can the behavior of
macroscopic systems be so predictable if their microscopic constituents are so
unruly? Shouldn’t there be some connection between the two?

Indeed, the behaviors of the individual microscopic elements are reflected in
the properties of the system as a whole. In this course, we will learn how to make
the translation, either way, between microscopic behaviors and macroscopic
properties.

A The translation between microscopic and
macroscopic behavior

A.1 The statistical tools

If you guess whether a flipped coin will land heads or tails, you have a 50% chance
of being wrong. But for a very large number of flipped coins, you may safely
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4 Introduction to thermodynamics and statistical mechanics

(a) (b)

Figure 1.1 (a) If you know the probabilities for one single coin flip then you can
predict the heads--tails distribution for a large number of them. Conversely, by
observing the heads--tails distribution for a large number of flipped coins, you can
infer the probabilities for any one of them. (b) What is the probability that a rolled
dice will land with six dots up? If a large number of dice were rolled, roughly what
fraction of them would land with six dots up?

assume that nearly half will land heads. Even though the individual elements are
unruly, the behavior of a large system is predictable (Figure 1.1).

Your prediction could go the other way, too. From the behavior of the entire
system, you might predict probabilities for the individual elements. For example,
if you find that one sixth of a large number of rolled dice show sixes (i.e., six
dots up), you can correctly infer that the probability for any one die to show
a six is 1/6 (Figure 1.1b). When a system is composed of a large number of
identical elements, you can use the observed behavior of an individual element
to predict the properties of the whole system, or conversely, you can use the
observed properties of the entire system to deduce the probable behaviors of the
individual elements.

The study of this two-way translation between the behavior of the individ-
ual elements and the properties of the system as a whole is called statistical
mechanics. One of the goals of this book is to give you the tools for making this
translation, in either direction, for whatever system you wish.

A.2 Thermodynamics

The industrial revolution and the attendant proliferation in the use of engines gave
a huge impetus to the study of thermodynamics, a name that obviously reflects
the early interest in turning heat into motion. The study now encompasses all
forms of work and energy and includes probing the relationships among system
parameters, such as how pressure influences temperature, how energy is converted
from one form to another, etc.
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Introduction 5

Considerable early progress was made with little or no knowledge of the
atomic nature of matter. Now that we understand matter’s elementary constituents
better, the tools of thermodynamics and statistical mechanics help us improve
our understanding of matter and macroscopic systems at a more fundamental
level.

Summary of Section A

If a system is composed of many identical elements, the probable behaviors of an

individual element may be used to predict the properties of the system as a whole or,

conversely, the properties of the system as a whole may be used to infer the probable

behaviors of an individual element. The study of the statistical techniques used to

make this two-way translation between the microscopic and macroscopic behaviors

of physical systems is called statistical mechanics. The study of interrelationships

among macroscopic properties is called thermodynamics. Using statistical tools, we

can relate the properties of a macroscopic system to the behaviors of its individual

elements, and in this way obtain a better understanding of both.

B Quantum effects

When a large number of coins are flipped, it is easy to predict that nearly half will
land heads up. With a little mathematical sophistication, you might even be able
to calculate typical fluctuations or probabilities for various possible outcomes.
You could do the same for a system of many rolled dice.

Like coins and dice, the microscopic constituents of physical systems also have
only certain discrete states available to them, and we can analyze their behaviors
with the same tools that we use for systems of coins or dice. We now describe a
few of these important “quantized” properties, because we will be using them as
examples in this course. You may wish to refer back to them when you arrive at
the appropriate point later in the book.

B.1 Electrical charge

For reasons we do not yet understand, nature has provided electrical charge in
fundamental units of 1.6 × 10−19 coulombs, a unit that we identify by e:

e = 1.602 × 10−19 C.

We sometimes use collisions to study the small-scale structure of subatomic
particles. No matter how powerful the collision or how many tiny fragments are
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6 Introduction to thermodynamics and statistical mechanics

produced, the charge of each is always found to be an integral number of units of
the fundamental charge, e.1

B.2 Wave nature of particles

In the nineteenth century it was thought that energy could go from one point to
another by either of two distinct processes: the transport of matter or the propaga-
tion of waves. Until the 1860s, we thought waves could only propagate through
matter. Then the work of James Clerk Maxwell (1831--79) demonstrated that
electromagnetic radiation was also a type of wave, with oscillations in electric
and magnetic fields rather than in matter. These waves traveled at extremely high
speeds and through empty space. Experiments with appropriate diffraction grat-
ings showed that electromagnetic radiation displays the same diffractive behavior
as waves that travel in material media, such as sound or ocean waves.

Then in the early twentieth century, experiments began to blur the distinction
between the two forms of energy transport. The photoelectric effect and Compton
scattering demonstrated that electromagnetic “waves” could behave like “parti-
cles.” And other experiments showed that “particles” could behave like “waves:”
when directed onto appropriate diffraction gratings, beams of electrons or other
subatomic particles yielded diffraction patterns, just as waves do.

The wavelength λ for these particle--waves was found to be inversely propor-
tional to the particle’s momentum p; it is governed by the same equation used for
electromagnetic waves in the photoelectric effect and Compton scattering,

λ = h

p
(h = 6.626 × 10−34 J s). (1.1)

Equivalently, we can write a particle’s momentum in terms of its wave number,
k = 2π/λ.

p = h

λ
= h

2π

2π

λ
= hk ( h = h/2π = 1.055 × 10−34 J s). (1.2)

The constant of proportionality, h, is Planck’s constant, and when divided by 2π

it is called “h-bar.”
We do not know why particles behave as waves any more than we know

why electrical charge comes in fundamental units e. But they do, and we can
set up differential “wave equations” to describe any system of particles we like.
The solutions to these equations are called “wave functions,” and they give us
the probabilities for various behaviors of the system. In the next few pages we
describe some of the important consequences.

1 For quarks the fundamental unit would be e/3. But they bind together to form the observed ele-

mentary particles (protons, neutrons, mesons, etc.) only in ways such that the total electrical charge

is in units of e.
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Introduction 7

Figure 1.2 The
superposition of the sine
waves below yields the
sawtooth wave above.

B.3 Uncertainty principle

Any function of the variable x on (−∞, ∞) can be written as a superposition
of sine wave components of various wavelengths (Figure 1.2). These sine wave
components may be either of the form sin kx and cos kx, or eikx , and the technique
used to determine the contributions of each component to any function, f (x), is
called Fourier analysis. In mathematical terms, any function f (x) on (−∞, +∞)
can be written as

f (x) =
∫ ∞

0

[a(k) sin kx + b(k) cos kx] dk

or

f (x) =
∫ ∞

−∞
c(k)eikx dk,

where the coefficients a(k), b(k), c(k) are the “amplitudes” of the respective
components.

We now investigate the behavior of a particle’s wave function in the x dimen-
sion. Although a particle exists in a certain region of space, the sine wave compo-
nents, e.g., sin kx, extend forever. Consequently, if we are to construct a localized
function from the superposition of infinitely long sine waves, the superposition
must be such that the various components cancel each other out everywhere
except for the appropriate small region (Figure 1.3).

To accomplish this cancellation requires an infinite number of sine wave com-
ponents, but the bulk of the contributions come from those whose wave numbers
k lie within some small region �k. As we do the Fourier analysis of various
functions, we find that the more localized the function is in x, the broader is the
characteristic spread in the wave numbers k of the sine wave components.
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8 Introduction to thermodynamics and statistical mechanics

Δxcancellation cancellation

1 2 3 4 5

Figure 1.3 (Top) Superposition of two sine waves of nearly the same wavelengths
(the broken and the dotted curves), resulting in beats (the solid curve). The closer
the two wavelengths, the longer the beats. There is an inverse relationship. (Bottom)
In a particle’s wave function, the sine wave components must cancel each other out
everywhere except for the appropriate localized region of space, �x. To make a
waveform that does not repeat requires the superposition of an infinite number of
sine waves, but the same relationship applies: the spread in wavelengths is
inversely related to the length of the beat. (The cancellation of the waves farther out
requires the inclusion of waves with a smaller spread in wavelengths. So the wave
numbers of these additional components are closer together and therefore lie within
the range �k of the ‘‘primary”wave number.)

In fact, the two are inversely related. If �x represents the characteristic width of
the particle’s wave function and �k the characteristic spread in the components’
wave numbers, then

�x�k = 2π.

If we multiply both sides by h and use the relationship 1.2 between wave number
and momentum for a particle, this becomes the uncertainty principle,

�x�px = h. (1.3)

This surprising result2 tells us that because particles behave like waves, they
cannot be pinpointed. We cannot know exactly either where they are or where

2 The uncertainty principle is written in many closely related forms. Many authors replace the equals

sign by ≥, to indicate that the actual measurement may be less precise than the mathematics allows.

Furthermore, the spread is a matter of probabilities, so its size reflects your confidence level (i.e.,

50%, 75%, etc.). We use the conservative value h because it coincides with Nature’s choice for the

size of a quantum state, as originally discovered in the study of blackbody radiation.
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Introduction 9

px px
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h h

x x

(a) (b)

Figure 1.4 (a) According to classical physics, a particle could be located as a point
in (x,px) space. That is, both its position and momentum could be specified exactly.
In modern physics, however, the best we can do is to identify a particle as being
somewhere within a box of area �x�px = h. (b) Because of the wave nature of
particles, if we try to specify better the location of a particle in x-space, we lose
accuracy in the determination of its momentum px. The area �x�px of the minimal
quantum box does not change.

they are going. If we try to locate a particle’s coordinates in the two-dimensional
space (x, px ), we will not be able to specify either coordinate exactly. Instead, the
best we can do is to say that its coordinates are somewhere within a rectangle of
area �x�px = h (Figure 1.4a). If we try to specify its position in x better then our
uncertainty in px will increase, and vice versa; the area of the rectangle �x�px

remains the same (Figure 1.4b).

B.4 Quantum states and phase space

The position (x, y, z) and momentum (px , py, pz) specify the coordinates of a
particle in a six-dimensional “phase space.” Although the uncertainty relation
1.3 applies to the two-dimensional phase space (x, px ), identical relationships
apply in the y and z dimensions. And by converting to angular measure, we get
the same uncertainty principle for angular position and angular momentum. Thus
we obtain

�y�py = h, �z�pz = h, �θ�L = h. (1.3′, 1.3′′, 1.3′′′)

We can multiply the three relationships 1.3, 1.3′, 1.3′′ together to get

�x�y�z�px�py�pz = h3,

which indicates that we cannot identify a particle’s position and momentum coor-
dinates in this six-dimensional phase space precisely. Rather, the best we can do
is to say that they lie somewhere within a six-dimensional quantum “box” or
“state” of volume �x�y�z�px�py�pz = h3.
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10 Introduction to thermodynamics and statistical mechanics

h = area of one state

number of states =
[x] [px]

h

h

px

x

[px]

[x]

Figure 1.5 The total
number of quantum
states accessible to a
particle whose
momentum is confined to
the range [px] and whose
position is confined to the
range [x] is equal to the
total accessible area in
phase space divided by
the area of a single
quantum state, [x][px]/h.

Consider a particle moving in the x dimension whose position and momentum
coordinates lie within the ranges [x] and [px ], respectively (Figure 1.5). The
number of different quantum states that are available to this particle is equal to
the total accessible area in two-dimensional phase space, [x][px ], divided by the
area of a single quantum state, �x�px = h. That is,

number of accessible states = total area

area of one state
= [x][px]

h
.

Extending this to motion in three dimensions we have

number of accessible states = Vr Vp

h3
, (1.4)

where Vr and Vp are the accessible volumes in coordinate and momentum space,
respectively. In particular, the number of quantum states available in the six-
dimensional volume element d3rd3 p is given by

number of accessible states = d3rd3 p

h3
= dxdydzdpx dpydpz

h3
. (1.5)

One important consequence of the relations 1.4 and 1.5 is that the number of
quantum states included in any interval of any coordinate is directly proportional
to the length of that interval. If ξ represents any of the phase-space coordinates
(i.e., the position and momentum coordinates) then

number of quantum states in the interval dξ ∝ dξ. (1.6)

B.5 Density of states

Many calculations require a summation over all states accessible to a particle.
Since quantum states normally occupy only a very small region of phase space
and are very close together, it is often convenient to replace discrete summation
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