MRI from Picture to Proton presents the basics of MR practice and theory as the practitioner first meets them. The subject is approached intuitively: starting from the images, equipment and scanning protocols, rather than pages of dry physics theory. The reader is brought face-to-face with issues pertinent to practice immediately, filling in the theoretical background as their scanning experience grows. Key ideas are introduced in an intuitive manner which is faithful to the underlying physics but avoids the need for difficult or distracting mathematics. Additional explanations for the more technically inquisitive are given in optional secondary text boxes. Informal in style, informed in content, written by experienced teachers, MRI from Picture to Proton is an essential text for the student of MR whatever their background: medical, technical or scientific.

Donald W. McRobbie is Head of Radiological and MR Physics in the Radiological Sciences Unit, the Hammersmith Hospitals NHS Trust and Senior Lecturer in Imaging at Imperial College London.

Elizabeth A. Moore is MR Clinical Scientist for Philips Medical Systems UK.

Martin J. Graves is Consultant Clinical Scientist in the Department of Radiology at the University of Cambridge Hospitals NHS Foundation Trust.

Martin R. Prince is Professor of Radiology at Columbia College of Physicians and Surgeons and at Weill Medical College of Cornell University as well as Chief of MRI at New York Hospital.
MRI
From Picture to Proton
Second Edition
Donald W. McRobbie
Elizabeth A. Moore
Martin J. Graves and
Martin R. Prince
Every effort has been made in preparing this book to provide accurate and up-to-date information that is in accord with accepted standards and practice at the time of publication. Nevertheless, the authors, editors and publisher can make no warranties that the information contained herein is totally free from error, not least because clinical standards are constantly changing through research and regulation. The authors, editors and publisher therefore disclaim all liability for direct or consequential damages resulting from the use of material contained in this book.

Readers are strongly advised to pay careful attention to information provided by the manufacturer of any drugs or equipment that they plan to use.

Cover illustrations: courtesy of Siemens Medical Solutions
To Fiona, Laura and Andrew
DWMcR

To all the people who kept asking me when this book would be written
EAM

To Philippa, Sophie, Katie and Chloe
MIG

To my brilliant colleagues, fellows, residents and technologists who have taught me the art of MRI
MRP
Contents

Acknowledgements xi

1 MR: What’s the attraction? 1
 1.1 It’s not rocket science, but I like it 1
 1.2 A brief history of medical imaging 2
 1.3 How to use this book 4
 further reading 7

Part A The basic stuff

2 Early daze: your first week in MR 11
 2.1 Introduction 11
 2.2 Welcome to the MR unit 11
 2.3 Safety first 15
 2.4 The patient’s journey 18
 2.5 Basic clinical protocols 19
 2.6 A week in the life of an MRI radiographer 27
 further reading 29

3 Seeing is believing: introduction to image contrast 30
 3.1 Introduction 30
 3.2 Some basic stuff 31
 3.3 T1-weighted images 32
 3.4 T2-weighted images 33
 3.5 PD-weighted images 35
 3.6 GE T1-weighted images 36
 3.7 GE T2*-weighted images 38
 3.8 GE PD-weighted images 40
 3.9 STIR images 40
 3.10 FLAIR images 41
 3.11 Contrast agents 42
Contents

3.12 Angiographic images 44
Further reading 46

4 The devil's in the detail: pixels, matrices and slices 47
4.1 Introduction 47
4.2 Digital and analogue images 47
4.3 Matrices, pixels and an introduction to resolution 51
4.4 Slices and orientations 57
4.5 Displaying images 57
4.6 What do the pixels represent? 58
4.7 From 2D to 3D 61
Further reading 64

5 What you set is what you get: basic image optimization 65
5.1 Introduction 65
5.2 Looking on the bright side: what are we trying to optimize? 65
5.3 Trading places: resolution, SNR and scan time 69
5.4 Ever the optimist: practical steps to optimization 74
Further reading 78

6 Improving your image: how to avoid artefacts 79
6.1 Introduction 79
6.2 Keep still please: gross patient motion 79
6.3 Physiological motion 80
6.4 Motion artefacts from flow 86
6.5 Lose the fat? 89
6.6 Partial volume artefact and cross-talk 96
6.7 Phase sampling artefacts 98
6.8 Susceptibility and metal artefacts 101
6.9 Equipment artefacts 103
6.10 What's causing this artefact? 107
Further reading 107

7 Spaced out: spatial encoding 108
7.1 Introduction 108
7.2 Anatomy of a pulse sequence 108
7.3 From Larmor to Fourier via gradients 109
7.4 Something to get excited about: the image slice 113
7.5 In-plane localization 117
7.6 Consequences of Fourier imaging 129
7.7 Speeding it up 133
7.8 3D FT 135
Further reading 136

8 Getting in tune: resonance and relaxation 137
8.1 Introduction 137
8.2 Spinning nuclei 137
8.3 Measuring the magnetic moment 141
8.4 Creating echoes 144
8.5 Relaxation times 148
8.6 Relaxation time mechanisms 153
8.7 Measuring relaxation times in vivo 161
8.8 Contrast agent theory 162
Further reading 166

9 Let's talk technical: MR equipment 167
9.1 Introduction 167
9.2 Magnets 167
9.3 Gradients 173
9.4 RF system 175
9.5 Computer systems 188
9.6 Open MRI systems 188
9.7 Siting and installation 189
Further reading 191

10 But is it safe? Bio-effects 192
10.1 Introduction 192
10.2 RF effects 192
10.3 Gradient effects 194
10.4 Static field effects 197
Further reading 200

Part B The specialist stuff

11 Ghosts in the machine: quality control 203
11.1 Introduction 203
11.2 The quality cycle 204
11.3 Signal parameters 204
11.4 Geometric parameters 211
Contents

11.5 Relaxation parameters 216
11.6 Artefacts 217
11.7 Spectroscopic QA 218
Further reading 219

12 Acronyms anonymous: a guide to the pulse sequence jungle 220
12.1 Introduction 220
12.2 Getting above the trees: a sequences overview 220
12.3 RARING to go: SE-based techniques 222
12.4 Spoiled for choice: GE 235
12.5 Ultra-fast GE imaging 248
12.6 Pulse sequence conversion chart 255
Further reading 257

13 Go with the flow: MR angiography 258
13.1 Introduction 258
13.2 Effect of flow in conventional imaging techniques 258
13.3 TOF MRA 263
13.4 PC angiography 265
13.5 CE MRA 271
13.6 Novel contrast agents 279
Further reading 281

14 A heart to heart discussion: cardiac MRI 282
14.1 Introduction 282
14.2 Artefact challenges 282
14.3 Morphological imaging 285
14.4 Functional imaging 288
14.5 Cine-phase-contrast velocity mapping 298
14.6 Myocardial perfusion imaging 300
14.7 Myocardial viability 303
14.8 Coronary artery imaging 304
Further reading 305

15 It's not just squiggles: in vivo spectroscopy 306
15.1 Introduction 306
15.2 Some basic chemistry 307
15.3 Single-voxel spectroscopy 310
15.4 Processing of single-voxel spectra 316
15.5 Chemical shift imaging 318
15.6 31P spectroscopy 319
15.7 Other nuclei 321
15.8 Hyperpolarized gases further reading 324

16 To BOLDly go: new frontiers 325
16.1 Introduction 325
16.2 EPI acquisition methods 325
16.3 Diffusion imaging 329
16.4 Perfusion imaging 335
16.5 Brain activation mapping using 341 the BOLD effect 340
Further reading 345

17 The parallel universe: parallel imaging and novel acquisition techniques 346
17.1 Introduction 346
17.2 Groundwork 346
17.3 Making SENSE: parallel imaging in image space 348
17.4 SMASH hits: parallel imaging in k-space 351
17.5 k-t BLAST 357
17.6 Clinical benefits of parallel imaging 359
17.7 Image quality in parallel imaging 360
17.8 Non-Cartesian acquisition schemes 364
17.9 Epilogue: the final frontier 371
Further reading 373

Appendix: maths revision 375
A.1 Vectors 375
A.2 Sine and cosine waves 376
A.3 Exponentials 377
A.4 Complex numbers 377
A.5 Simple Fourier analysis 378
A.6 Some useful constants 379
Index 381

© in this web service Cambridge University Press www.cambridge.org
Acknowledgements

We thank the following for assistance in providing images for this book (in alphabetical order): Mitchell Albert, Caroline Andrews, Janet De Wilde, Jo Hajnal, Andrew Heath, Franklyn Howe, Derek Jones, Steve Keevil, Debiao Li, David MacManus, Erin McKinstry, James F. M. Meane, Annie Papadaki, Simon Pittard, Rebecca Quest, Erica Scurr, Annette Schmidt, Stefan Schoenberg, Julie Shepherd, Catriona Todd, Dennis Walkingshaw, Barry Whitnall, Ian Young, and Honglei Zhang.

The permission of the Department of Radiology, University of Cambridge and Addenbrooke's NHS Trust to reproduce certain figures and images is gratefully acknowledged.

Other images were kindly provided by the Hammersmith Hospitals NHS Trust and Chelsea and Westminster Hospital London, and by the Lysholm Department of Radiology, National Hospital for Neurology & Neurosurgery, London.

We also thank Erin McKinstry of the Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, for helpful comments on hyperpolarized gas imaging and Jeff Hayden of the American College of Radiology for guidance regarding the ACR Accreditation Program.

Our mystery radiographer is thanked for providing access to her diary.

Figures and material relating to the ACR Accreditation Program are reprinted with permission of the American College of Radiology, Reston, VA. No other representation of this material is authorized without express, written permission from the American College of Radiology.
Acknowledgements

The subject matter of this book may be covered by one or more patents. This book and the information contained therein and conveyed thereby should not be construed as either explicitly or implicitly granting any license; and no liability for patent infringement arising out of the use of the information is assumed.

We would like to thank Sarah Price for invaluable editorial fine tuning and the team at Cambridge University Press, especially Peter Silver, Lucille Murby and Jane Williams. Thanks also to Greg Brown for suggesting the title.