Wireless Ad Hoc and Sensor Networks

Wireless Ad Hoc and Sensor Networks describes the theory of ad hoc networks. It also demonstrates techniques for designing efficient algorithms and systematically analyzing their performance.

Li develops the fundamental understanding required to tackle problems in these networks by first reviewing relevant protocols, then formulating problems mathematically, and solving them algorithmically. Wireless MAC protocols, including various IEEE 802.11 protocols, 802.16, Bluetooth, and protocols for wireless sensor networks are treated in detail. Channel assignment for maximizing network capacity is covered; topology control methods are explored at length; and routing protocols for unicast, broadcast, and multicast are described and evaluated. Cross-layer optimization is also considered.

The result is a detailed account of the various algorithmic, graph-theoretical, computational-geometric, and probabilistic approaches to attack problems faced in these networks, delivering an understanding that will allow readers to develop practical solutions for themselves. This title is an invaluable resource for graduate students and researchers in electrical engineering and computer science departments, as well as for practitioners in the communications industry.

XiangYang Li is currently an associate professor of computer science at the Illinois Institute of Technology. He also holds a visiting professorship or adjunct-professorship at TianJing University, WuHan University, and NanJing University, in China. He was awarded his Ph.D. in 2001 from the Department of Computer Science at the University of Illinois at Urbana-Champaign. A leading researcher in the field of wireless networks, he has made important contributions in the areas of network topology and routing. His current research interests include cooperation, energy efficiency, and distributed algorithms for wireless ad hoc and sensor networks.

Wireless Ad Hoc and Sensor Networks

Theory and Applications

XIANGYANG LI Illinois Institute of Technology

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

Cambridge University Press 32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org Information on this title: www.cambridge.org/9780521865234

© Cambridge University Press 2008

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2008

Printed in the United States of America

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication Data

Li, XiangYang.
Wireless ad hoc and sensor networks: theory and applications / XiangYang Li.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-521-86523-4 (hbk.)
1. Wireless communication systems. 2. Sensor networks. I. Title.

TK5103.2.L546 2008 621.384-dc22 2007037219

ISBN 978-0-521-865234 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

> To my wife, Min my daughter, Sophia my son, Kevin and my families

Contents

	Pref	<i>îace</i>	<i>page</i> xiii
	Acki	nowledgments	xxi
	Abb	reviations	xxiii
Part I	Introduc	tion	1
1	Histo	ory of Wireless Networks	3
	1.1	Introduction	3
	1.2	Different Wireless Networks	4
	1.3	Conclusion	14
2	Wire	eless Transmission Fundamentals	17
	2.1	Wireless Channels	17
	2.2	The Wireless Communication Graph	21
	2.3	Power Assignment and Topology Control	23
	2.4	The Wireless Interference Graph	28
	2.5	Related Graph Problems and Geometry Concepts	32
	2.6	Energy-Consumption Models	35
	2.7	Mobility Models	38
	2.8	Conclusion	41
Part II	Wireles	s MACs	45
3	Wire	less Medium-Access Control Protocols	47
	3.1	Introduction	47
	3.2	IEEE 802.11 Architecture and Protocols	49
	3.3	WiMAX	60
	3.4	Bluetooth	61
	3.5	MAC Protocols for Wireless Sensor Networks	63
	3.6	Conclusion	69

4	TDM	A Channel Assignment	71
	4.1	Introduction	71
	4.2	System Model and Assumptions	73
	4.3	Centralized Scheduling	75
	4.4	Distributed Algorithms	85
	4.5	Weighted Coloring and Schedulable Flows	90
	4.6	Further Reading	94
	4.7	Conclusion and Remarks	96
5	Spec	trum Channel Assignment	99
	5.1	Introduction	99
	5.2	Network System Model	101
	5.3	List-Coloring for Access Networks	102
	5.4	List-Coloring for Ad Hoc Networks	112
	5.5	Transition Phenomena on Channel Availability	114
	5.6	Further Reading	116
	5.7	Conclusion and Remarks	118
6	CDM	A Code Channel Assignment	120
	6.1	Introduction	120
	6.2	System Model and Assumptions	123
	6.3	Throughput and Bottleneck of General Graphs	126
	6.4	Approximation Algorithms for Interference Graphs	129
	6.5	Maximum Weighted Independent Set for a General Wireless	
		Network Model	136
	6.6	Further Reading	148
	6.7	Conclusion and Remarks	150
Part III	Fopolog	y Control and Clustering	153
7	Clust	tering and Network Backbone	155
	7.1	Introduction	155
	7.2	Network Models and Problem Formulation	155
	7.3	Centralized Algorithms for a Connected Dominating Set	157
	7.4	Message Lower Bound for Distributed-Backbone Construction	161
	7.5	Some Backbone-Formation Heuristics	163
	7.6	Efficient Distributed-Nontrivial-Backbone-Formation Method	166
	7.7	Efficient Distributed-Backbone-Formation Method	170
	7.8	Linear-Programming-Based Approaches	179
	7.9	Geometry-Position-Based Approaches	184
	7.10	Further Reading	186
	7.11	Conclusion and Remarks	187

		Contents	i:
8	Weig	jhted Network Backbone	19
0	-		
	8.1	Introduction	19
	8.2	Study of Typical Methods	19
	8.3	Centralized Low-Cost Backbone-Formation Algorithms	19.
	8.4	Efficient Distributed Low-Cost Backbone-Formation Algorithms	19
	8.5	Performance Guarantee Discussion	19
	8.6 8.7	Further Reading	20: 20:
	8.8	Conclusion and Remarks	20
9	Торо	logy Control with Flat Structures	21.
	9.1	Introduction	21
	9.2	Current State of Knowledge	219
	9.3	Planar Structures	22-
	9.4	Bounded-Degree Spanner and Yao's Family	22
	9.5	Bounded-Degree Planar Spanner	23
	9.6	Low-Weighted Structures	23
	9.7	A Unified Structure: Energy Efficiency for Unicast	
		and Broadcast	23
	9.8	Spanners for Heterogeneous Networks	25
	9.9	Fault-Tolerant Structures	259
	9.10	1	26
	9.11	Conclusion and Remarks	26'
10	Powe	er Assignment	270
	10.1	Introduction	270
	10.2	Power Assignment for Connectivity	27.
	10.3	Power Assignment for Routing	28
	10.4	Further Reading	284
	10.5	Conclusion and Remarks	28
11	Critic	cal Transmission Ranges for Connectivity	289
	11.1	Introduction	28
	11.2	Preliminaries	292
	11.3	Critical Range for Connectivity	29
	11.4	Critical Range for k-Connectivity	29
	11.5	•	30
	11.6		30
	11.7	6	30
	11.8	Conclusion and Remarks	310

Х

Contents

12	Other	Transition Phenomena	313
	12.1	Introduction	313
	12.2	Critical Node Degree for Connectivity	313
	12.3	Critical Range for Connectivity in Sparse Networks	315
	12.4	Critical Range for Connectivity for Mobile Networks	316
	12.5	Critical Sensing Range for Coverage	320
	12.6	Critical Range for Successful Routing	322
	12.7	Further Reading	330
	12.8	Conclusion and Remarks	331
Part IV W	lireless	s Network Routing Protocols	333
13	Energ	y-Efficient Unicast Routing	335
	13.1	Introduction	335
	13.2	Proactive Approaches	336
	13.3	Reactive Approaches	340
	13.4	Geographic Approaches	347
	13.5	Clustering and Hierarchical Routing	361
	13.6	Further Reading	364
	13.7	Conclusion and Remarks	365
14	Energ	y-Efficient Broadcast/Multicast Routing	369
14	Energ 14.1	y-Efficient Broadcast/Multicast Routing Introduction	369 369
14	-		
14	14.1	Introduction	369
14	14.1 14.2 14.3 14.4	Introduction Centralized Methods	369 374 380 392
14	14.1 14.2 14.3 14.4 14.5	Introduction Centralized Methods Efficient Distributed or Localized Methods Scheduling Active and Sleep Periods Energy-Efficient Multicast	369 374 380 392 394
14	14.1 14.2 14.3 14.4 14.5 14.6	Introduction Centralized Methods Efficient Distributed or Localized Methods Scheduling Active and Sleep Periods Energy-Efficient Multicast Further Reading	369 374 380 392 394 398
14	14.1 14.2 14.3 14.4 14.5	Introduction Centralized Methods Efficient Distributed or Localized Methods Scheduling Active and Sleep Periods Energy-Efficient Multicast	369 374 380 392 394
14 15	14.1 14.2 14.3 14.4 14.5 14.6 14.7	Introduction Centralized Methods Efficient Distributed or Localized Methods Scheduling Active and Sleep Periods Energy-Efficient Multicast Further Reading	369 374 380 392 394 398
	14.1 14.2 14.3 14.4 14.5 14.6 14.7	Introduction Centralized Methods Efficient Distributed or Localized Methods Scheduling Active and Sleep Periods Energy-Efficient Multicast Further Reading Conclusion and Remarks ng with Selfish Terminals Introduction	369 374 380 392 394 398 399
	14.1 14.2 14.3 14.4 14.5 14.6 14.7 Routi 15.1 15.2	Introduction Centralized Methods Efficient Distributed or Localized Methods Scheduling Active and Sleep Periods Energy-Efficient Multicast Further Reading Conclusion and Remarks ng with Selfish Terminals Introduction Preliminaries and Network Model	369 374 380 392 394 398 399 402 402 402
	14.1 14.2 14.3 14.4 14.5 14.6 14.7 Routi 15.1 15.2 15.3	Introduction Centralized Methods Efficient Distributed or Localized Methods Scheduling Active and Sleep Periods Energy-Efficient Multicast Further Reading Conclusion and Remarks ng with Selfish Terminals Introduction Preliminaries and Network Model Truthful Payment Schemes for Multicast	369 374 380 392 394 398 399 402 402 402 403 408
	14.1 14.2 14.3 14.4 14.5 14.6 14.7 Routi 15.1 15.2 15.3 15.4	Introduction Centralized Methods Efficient Distributed or Localized Methods Scheduling Active and Sleep Periods Energy-Efficient Multicast Further Reading Conclusion and Remarks ng with Selfish Terminals Introduction Preliminaries and Network Model Truthful Payment Schemes for Multicast Sharing Multicast Costs or Payments Among Receivers	369 374 380 392 394 398 399 402 402 402 402 403 408 416
	14.1 14.2 14.3 14.4 14.5 14.6 14.7 Routi 15.1 15.2 15.3 15.4 15.5	Introduction Centralized Methods Efficient Distributed or Localized Methods Scheduling Active and Sleep Periods Energy-Efficient Multicast Further Reading Conclusion and Remarks ng with Selfish Terminals Introduction Preliminaries and Network Model Truthful Payment Schemes for Multicast Sharing Multicast Costs or Payments Among Receivers Existence of Truthful Payment Scheme	369 374 380 392 394 398 399 402 402 402 402 403 408 416 431
	14.1 14.2 14.3 14.4 14.5 14.6 14.7 Routi 15.1 15.2 15.3 15.4 15.5 15.6	Introduction Centralized Methods Efficient Distributed or Localized Methods Scheduling Active and Sleep Periods Energy-Efficient Multicast Further Reading Conclusion and Remarks ng with Selfish Terminals Introduction Preliminaries and Network Model Truthful Payment Schemes for Multicast Sharing Multicast Costs or Payments Among Receivers Existence of Truthful Payment Scheme Further Reading	369 374 380 392 394 398 399 402 402 402 403 408 416 431 433
	14.1 14.2 14.3 14.4 14.5 14.6 14.7 Routi 15.1 15.2 15.3 15.4 15.5	Introduction Centralized Methods Efficient Distributed or Localized Methods Scheduling Active and Sleep Periods Energy-Efficient Multicast Further Reading Conclusion and Remarks ng with Selfish Terminals Introduction Preliminaries and Network Model Truthful Payment Schemes for Multicast Sharing Multicast Costs or Payments Among Receivers Existence of Truthful Payment Scheme	369 374 380 392 394 398 399 402 402 402 402 403 408 416 431
	14.1 14.2 14.3 14.4 14.5 14.6 14.7 Routi 15.1 15.2 15.3 15.4 15.5 15.6 15.7	Introduction Centralized Methods Efficient Distributed or Localized Methods Scheduling Active and Sleep Periods Energy-Efficient Multicast Further Reading Conclusion and Remarks ng with Selfish Terminals Introduction Preliminaries and Network Model Truthful Payment Schemes for Multicast Sharing Multicast Costs or Payments Among Receivers Existence of Truthful Payment Scheme Further Reading Conclusion and Remarks Routing, Channel Assignment, and Link Scheduling	369 374 380 392 394 398 399 402 402 402 403 408 416 431 433
15	14.1 14.2 14.3 14.4 14.5 14.6 14.7 Routi 15.1 15.2 15.3 15.4 15.5 15.6 15.7	Introduction Centralized Methods Efficient Distributed or Localized Methods Scheduling Active and Sleep Periods Energy-Efficient Multicast Further Reading Conclusion and Remarks ng with Selfish Terminals Introduction Preliminaries and Network Model Truthful Payment Schemes for Multicast Sharing Multicast Costs or Payments Among Receivers Existence of Truthful Payment Scheme Further Reading Conclusion and Remarks	369 374 380 392 394 398 399 402 402 402 403 403 408 416 431 433 436

Cambridge University Press	
978-0-521-86523-4 - Wireless Ad Hoc and Sensor Networks: Theory and Applications	
Xiangyang Li	
Frontmatter	
More information	

		Contents	2
	16.3	Problem Formulation for Cross-Layer Optimization	44
	16.4	Efficient Link, Channel Scheduling	44
	16.5	Further Reading	45
	16.6	Conclusion	45
Part V	Other Iss	ues	46
17	Local	ization and Location Tracking	46
	17.1	Introduction	46
	17.2	Available Information	46
	17.3	Computational Complexity of Sensor Network Localization	47
	17.4	Progressive Localization Methods	47
	17.5	Network-Wide Localization Methods	48
	17.6	Target Tracking and Classification	48
	17.7	Experimental Location and Tracking Systems	49
	17.8	Conclusion and Remarks	50
18	Perfo	rmance Limitations of Random Wireless Ad Hoc Networks	50
	18.1	Introduction	50
	18.2	Capacity of Unicast for an Arbitrary Network	50
	18.3	Capacity of Unicast for Randomly Deployed Networks	50
	18.4	Capacity of Broadcast for an Arbitrary Network	51
	18.5	Capacity of Broadcast for Randomly Deployed Networks	51
	18.6	Further Reading	51
	18.7	Conclusion and Remarks	51
19	Secur	ity of Wireless Ad Hoc Networks	52
	19.1	Introduction	52
	19.2	Cryptography Fundamentals	52
	19.3	Key-Predistribution Protocols	53
	19.4	Secure Routing Protocols	53
	19.5	Further Reading	54
	19.6	Conclusion and Remarks	54
	Biblic	ography	54
	Index		57

Preface

Introduction

In the next generation of wireless communication systems, there will be a need for the rapid deployment of independent mobile users. Significant examples include establishing survivable, efficient, dynamic communication for emergency/rescue operations, disaster relief efforts, and military networks. Such network scenarios cannot rely on centralized and organized connectivity and can be conceived as applications of mobile ad hoc networks (MANETs). A MANET is an autonomous collection of mobile users that communicate over relatively bandwidth-constrained wireless links. Because the nodes are mobile, the network topology may change rapidly and unpredictably over time. The network is decentralized; all network activity, including discovering the topology and delivering messages, must be executed by the nodes themselves; that is, routing functionality will be incorporated into mobile nodes.

In many commercial and industrial applications, we often need to monitor the environment and collect the information about the environment. In some of these applications, it would be difficult or expensive to monitor using wired sensors. If this is the case, wireless sensor networks in which sensors are connected by wireless networks are preferred. A wireless sensor network (WSN) consists of a number of sensors spread across a geographic area. Each sensor node has wireless communication capability and some level of intelligence for signal-processing and networking of data. A WSN could be deployed in wilderness areas for a sufficiently long time (e.g., years) without the need to recharge or replace the power supplies. Typical applications of WSNs include monitoring, tracking, and controlling.

The subject of wireless ad hoc networking and sensor networking is enormously complex, involving many concepts, protocols, technologies, algorithms, and products that work together in an intricate manner. The set of applications for MANETs is diverse, ranging from small, static networks that are constrained by power sources to large-scale, mobile, highly dynamic networks. Recently, wireless sensor networks have also been used in Supervisory Control and Data Acquisition (SCADA). SCADA systems are used to monitor or to control chemical or transport processes, in municipal water supply systems, control electric power generation, transmission, and distribution, gas and oil pipelines, and other distributed processes. The design of network protocols for these networks is a complex issue. Regardless of the application, MANETs and sensor networks need efficient distributed algorithms determining network organization, linking

xiv Preface

scheduling, and routing. However, determining feasible routing paths and delivering messages in a decentralized environment in which network topology fluctuates is not a well-defined problem. Although the shortest path (based on a given cost function) from a source to a destination in a static network is usually the optimal route, this idea is not easily extended to MANETs. Factors such as variable wireless link quality, propagation path loss, fading, multiuser interference, power expended, and topological changes become relevant issues. The network should be able to adaptively alter the routing paths to alleviate any of these effects. Moreover, in a military environment, preservation of security, latency, reliability, intentional jamming, and recovery from failure are significant concerns. Military networks are designed to maintain a low probability of intercept and/or a low probability of detection. Hence, nodes prefer to radiate as little power as necessary and transmit as infrequently as possible, thus decreasing the probability of detection or interception. A lapse in any of these requirements may degrade the performance and dependability of the network.

The basic goals of a wireless ad hoc sensor network generally depend on the application, but the following tasks are common to many networks:

- 1. Determine the value of some parameter at a given location: In an environmental network, one might want to know the temperature, atmospheric pressure, amount of sunlight, and relative humidity at a number of locations. This example shows that a given sensor node may be connected to different types of sensors, each with a different sampling rate and range of allowed values.
- 2. Detect the occurrence of events of interest and estimate parameters of the detected event or events: In the traffic sensor network, one would like to detect a vehicle moving through an intersection and estimate the speed and direction of the vehicle.
- 3. *Classify a detected object*: Is a vehicle in a traffic sensor network a car, a minivan, a light truck, a bus, and so on?
- 4. *Track an object*: In a military sensor network, one would like to track an enemy tank as it moves through the geographic area covered by the network.

In these four tasks, an important requirement of the sensor network is that the required data be disseminated to the proper end users. In some cases, there are fairly strict time requirements on this communication. For example, the detection of an intruder in a surveillance network should be immediately communicated to the police so that action can be taken. Because wireless sensors are often powered by batteries only, energy efficiency is critical for the lifetime of a wireless sensor network. Thus, a considerable amount of research has recently been devoted to developing energy-efficient protocols for wireless sensor networks. In addition to energy-efficient protocols, wireless ad hoc sensor network requirements include but are not limited to scalability (to support a large number of mostly stationary sensors for which networks of 10,000 or even 100,000 nodes are envisioned), network self-organization to support scalability and fault tolerance, collaborative signal-processing, and querying ability. Given the large number of nodes and their potential placement in hostile locations, it is essential that the network be able to self-organize; manual configuration is not feasible. Moreover, nodes may fail

Preface xv

(either from lack of energy or from physical destruction), and new nodes may join the network. Therefore, the network must be able to periodically reconfigure itself so that it can continue to function. Individual nodes may become disconnected from the rest of the network, but a high degree of connectivity must be maintained. Another factor that distinguishes wireless sensor networks from MANETs is that the end goal is detection/estimation of some events of interest and not just communications. To improve the detection/estimation performance, it is often quite useful to fuse data from multiple sensors. This data fusion requires the transmission of data and control messages, and so it may put constraints on the network architecture. A user may want to query an individual node or a group of nodes for information collected in the region. Depending on the amount of data fusion performed, it may not be feasible to transmit a large amount of the data across the network. Instead, various local sink nodes will collect the data from a given area and create summary messages. A query may be directed to the sink node nearest the desired location.

Recent years have seen a great amount of research in wireless networks, especially wireless ad hoc networks. These works involve a number of theoretical aspects of computer science, including approximation algorithms, computational geometry, combinatorics, and distributed algorithms. Because of the limited capability of processing power, storage, and energy supply, many conventional algorithms are too complicated to be implemented in wireless ad hoc and sensor networks. Some other algorithms do not take advantage of the geometric nature of the wireless networks. Additionally, most of the currently developed location-based algorithms for wireless networks assume a precise position of each wireless node, which is impossible practically. The majority of the algorithms with theoretical performance guarantee developed in this area also assume that all nodes have a uniform transmission range. These algorithms will likely fail when nodes have disparate transmission ranges. In summary, the wireless ad hoc and sensor networks require efficient distributed algorithms with low computation complexity, low communication complexity, and low storage complexity. These algorithms are expected to take advantage of the geometry nature of the wireless ad hoc networks. Several fundamental questions should be answered: Can we improve the performance of traditional distributed algorithms, developed for wired networks, under wireless ad hoc networks? Does the position information of wireless nodes make a difference in algorithm performance? Much of the existing work in wireless ad hoc networking also assumes that each individual wireless node (possibly owned by selfish users) will follow prescribed protocols without deviation. However, each user may modify the behavior of an algorithm for self-interest reasons. How are desired global-system performances achieved when individual nodes are selfish?

This is a new book aimed at the teaching of wireless ad hoc and sensor networks from the algorithmic and theoretical perspective. The primary focus of the book is on the algorithms, especially efficient distributed algorithms, related wireless ad hoc protocols, and some fundamental theoretical studies of phenomena in wireless ad hoc and sensor networks. Many aspects of wireless networking are covered at the introductory level. I tried to cover as many interesting and algorithmic challenging topics related to wireless ad hoc and/or sensor networks as possible in this book. I know that several interesting xvi Preface

topics and elegant algorithms are missing. Some are due to lack of space and some are due to the theme of the book. No judgment is implied for algorithms and protocols not covered in this book.

Audience

This book is intended for graduate students, researchers, and practitioners who are interested in obtaining a detailed overview of a number of various algorithmic, graphtheoretical, computational-geometric, and probabilistic approaches to attack certain challenging problems stemming from wireless networks, especially wireless ad hoc and sensor networks. Thus, when I wrote this book, I tried to cover many details for most of the algorithms studied. This book can, in general, serve as a reference resouce for researchers, engineers, and protocol developers working in the field of wireless ad hoc and/or sensor networks. Consequently, most of the chapters are written in such a way that they can be read and taught independently.

While I have tried to make the book (and most chapters) as self-contained as possible, some rudimentary knowledge of algorithm design and analysis, computational geometry, distributed systems, graph theory, linear algebra, networking protocols, and probability theory is required for reading this book.

Organization of the Book

This book essentially is organized based on the layers of wireless networking: the physical and medium-access-control (MAC) layers, the topology control functions that lie between the MAC and network routing layer, and the network routing layer.

The first part of the book presents introductory material that is necessary for the rest of the book.

Chapter 1 briefly reviews the history of wireless communications and discusses different wireless networks, such as infrastructure-based wireless networks (cellular networks) and infrastructureless wireless networks. Among infrastructureless networks, wireless ad hoc networks and wireless sensor networks are briefly discussed.

Chapter 2 covers some fundamentals of wireless transmissions. In this chapter, we study the interference constraints of wireless communications, the wireless propagation model, and the channel capacity of a wireless channel. We also define the communication graph and the interference graph (or conflict graph) induced by a wireless network. Because minimizing energy consumption is critical for the success of many wireless networks, we also review several energy-consumption models that are often used in the literature. Additionally, we discuss a number of mobility models to simulate mobile networks.

The second part of the book is mainly about the MAC protocols for wireless networks. We study CSMA, TDMA, and CDMA protocols.

Preface xvii

Chapter 3 concentrates on the CSMA-based wireless MAC protocols. We study how hidden-terminal and exposed-terminal problems are addressed. We also briefly study several typical wireless MAC protocols such as IEEE 802.11 (or WiFi) protocols for wireless LANs, IEEE 802.16 (WiMAX) for mesh networks, and Bluetooth for wireless personal area networks. We briefly review some of the specific MAC protocols proposed for wireless sensor networks that integrate CSMA and TDMA.

Chapter 4 concentrates on the MAC protocols based on TDMA. These protocols assume that the time is slotted and that each link will be assigned some time slots, in which it can transmit data over this link. When a link is assigned a time slot, it is guaranteed that no wireless interference will occur when it uses this link at this time slot. This assignment is often 0/1: A slot either is assigned to a link or is not assigned. When a time slot is not assigned, a link cannot transmit at that specific time slot. We study some TDMA-based link-scheduling algorithms that can provide theoretical performance guarantees.

Chapter 5 concentrates on spectrum channel assignment for wireless networks (cellular networks and wireless ad hoc networks). We first study how to assign channels for a set of access networks such that the network capacity is maximized, or the number of assigned channels is minimized while certain capacity requirements are satisfied. We then study the results for spectrum channel assignment for ad hoc networks. The objective of a channel assignment could be to use the least number of channels to achieve a connected network while the channel availability and network interface constraints at all nodes are satisfied. We also study the transition phenomena of a number of network properties depending on the availability of a wireless spectrum.

Chapter 6 studies several algorithms for assigning a CDMA code to wireless networks when CDMA is supported.

The third part of the book is about topology control and power assignment for wireless networks.

Chapter 7 studies the construction of backbone for wireless networks. Backbone is especially useful for routing in mobile networks. We study several centralized and distributed algorithms that can construct a network backbone (i.e., a connected dominating set) whose size is within a constant factor of the optimum for wireless networks modeled by a unit disk graph. We also study some pure localized algorithms that have lower communication costs, although the theoretical constant-approximation ratio on the backbone size is not guaranteed.

Chapter 8 studies the construction of a backbone network when each wireless node has a weight denoting its cost of being at the backbone. The objective is to minimize the total weight of the backbone. We study several algorithms with good approximation ratios.

Chapter 9 studies topology-control algorithms that will construct flat network topologies with proved performance guarantees. Here, a network topology is said to be flat if every node in the network will assume the same role in network routing. Notice that for a backbone-based structure, the node on the backbone will forward the messages for nodes that are not on the backbone. We study efficient distributed algorithms that can construct energy-efficient network topologies.

xviii Preface

Chapter 10 studies the power-assignment problems for wireless networks. Power assignment is selecting a transmission power for each node in the network such that the resulting communication network using the allocated transmission power has certain properties. The objective of a power assignment is often to minimize the total power used by all nodes or to minimize the maximum transmission power of all nodes. The latter is often easy to solve, based on a binary search on all choices of transmission power. We study algorithms that assign transmission powers such that the network is connected, k-connected, or consumes the least power for broadcast or multicast.

Chapters 11 and 12 are related to previous chapters but with different focuses. In these two chapters, we study the so-called transition phenomena of random wireless networks; in other words, the behavior of some certain parameters of the network when the number of nodes in the network goes to infinity. In Chapter 11, we study the critical transmission range r_n when a random network of n nodes distributed in a given region (typically, a unit square or a disk with unit area) is connected with high probability or k-connected with high probability. In Chapter 12, we study the critical node degree needed for producing a connected random network with high probability; the critical transmission range for connectivity in sparse networks or in mobile networks; the critical transmission range for a successful routing with high probability for certain localized routing algorithms; and the critical sensing range for covering a region with high probability.

The fourth part of the book is on routing protocols for wireless networks. We study routing protocols for unicast, multicast, and broadcast, and routing protocols with selfish agents.

Chapter 13 studies the energy-efficient unicast routing for wireless networks. We briefly review some typical proactive and reactive unicast routing protocols proposed in the literature, such as DSDV, OLSR, AODV, DSR, and opportunistic routing. We also study geographic routing protocols that utilize the geometry information of wireless nodes to improve the routing performance. Cluster-based hierarchical routing is also briefly discussed.

Chapter 14 studies energy-efficient routing protocols for broadcast and multicast. We first study some centralized algorithms for energy-efficient broadcast and multicast. These algorithms are often based on the node-weighted or link-weighted Steiner tree algorithms proposed in the literature. Later, we study several distributed or localized methods that are practically efficient.

Chapter 15 studies the routing from another point of view. In all previous protocols, it has been assumed that all wireless nodes will follow predescribed protocols without deviation. In practice, this may not be true, especially when wireless nodes are owned by individuals. In this chapter, we study how to design routing protocols when we know that individual nodes may not follow a routing protocol for their own benefit. We study this problem mainly using a game-theoretical approach, although a number of different approaches are also briefly discussed. In the game-theoretical-based approaches, wireless nodes will be compensated for their services to others. We study how each individual relay node is paid and how the payment to these nodes is implemented. For multicast, we also study algorithms that will fairly share the payments to relay nodes among potential receivers.

Preface xix

Chapter 16 studies how to improve the network through a cross-layer approach of jointly optimizing routing, link scheduling, and channel assignment. We formulate this problem as mixed-integer programming and then relax it to linear programming. By combining it with link scheduling, we show that the relaxed linear-programming formulation will find a solution that is at least a constant factor of the optimum for a number of network models.

The fifth and the last part of the book is devoted to studying a few other interesting topics in wireless networks; for example, location tracking, the performance of random networks, and security.

Chapter 17 studies finding the location of wireless sensor nodes and tracking the position of a moving object by using wireless sensor networks.

In previous chapters, especially Chapter 16, we study what maximum throughput is achievable by a given wireless network under a certain wireless interference model.

Chapter 18 concentrates on the asymptotic network capacity of a random network. We study how the capacity of wireless networks scale with the number of nodes in the networks (when given a fixed deployment region) or scale with the size of the deployment region (when given a fixed deployment density) for a number of operations, such as unicast and broadcast. We especially study a pioneering work by Gupta and Kumar on the network capacity of a random network for unicast. We also study the network capacity for broadcast under various channel models.

Chapter 19 concentrates on ensuring security in wireless networks. We mainly focus on some fundamentals of cryptography, some key-predistribution protocols, and some secure routing protocols proposed in the literature. Cryptography will provide us some fundamental tools such as symmetric-key and asymmetric-key encryption, digital signature, and hash functions to implement some security protocols. We then review some secure routing protocols proposed in the literature.

Acknowledgments

This work is supported in part by the National Basic Research Program of China (973 Program) under Grant No. 2006CB303000 and the National High Technology Research and Development Program of China (863 Program) under Grant No. 2007AA01Z180.

First, this book is in memory of Professor Chao-Ju (Jennifer) Hou from UIUC, a great researcher, an active leader, and a close colleague, who passed away due to breast cancer on December 2, 2007. I am indebted to her and many colleagues for background material and insightful input, which, in one way or another, have helped me to write certain parts of the book. I am also deeply grateful to many colleagues and peer researchers who shared with me in recent years the exciting tasks of studying algorithms and protocols with theoretical performance guarantees for wireless networks, whose research results have helped me in writing several chapters, and who provided feedback to early versions of this book. Especially, I would like to thank the following: Stefano Basagni, Gruia Călinescu, Guohong Cao, Marco Conti, Stephan Eidenbenz, Ophir Frieder, Jie Gao, Jennifer Hou, Jean-Pierre Hubaux, XiaoHua Jia, Sanjiv Kapoor, P. R. Kumar, Baochun Li, Erran Li, Qun Li, Xin Liu, YunHao Liu, Songwu Lu, Thyaga Nandagopal, Paolo Santi, Ivan Stojmenovic, Nitin Vaidya, Peng-Jun Wan, Roger Wattenhofer, Jie Wu, GuoLiang Xue, Frances Yao, and Chih-Wei Yi. I also would like to thank my (former and current) Ph.D. students at Illinois Institute of Technology: Professor Yu Wang, Dr. Weizhao Wang, Professor WenZhan Song, Kousha Moaveninejad, YanWei Wu, XuFei Mao, Ping Xu, Shajojie Tang, and XiaoHua Xu. Much of the material presented in this book is the fruit of our collaboration during the past few years.

The continued support and encouragement of my dad, KaiWen Li; my mom, LanHua Wu; my wife, Min Chen; my lovely daughter, Sophia Li; and my bright son, Kevin Li were essential ingredients in the completion of the book. I am grateful to them all. Without their unwearying love and patience, tireless encouragement, and full unconditional support, this book would never have been possible. I am also grateful for all my friends and colleagues who provided extraordinary insights, gave me helpful advice in research and life, and pointed me in the right direction.

Last but by no means least, I am deeply grateful to Anna Littlewood, Cambridge University Press, for her tireless effort in all matters relating to the preparation and production of many different versions of the manuscript for the book. I am also deeply grateful to Victoria Danahy and Barbara Walthall of Aptara Corp. for carefully copyediting all chapters of the book.

I am sure that I have missed many others, although not intentionally; I thank all of you.

XiangYang Li Chicago, Illinois February 2008

Abbreviations

15	
1D	one-dimensional
2D	two-dimensional
2G	second-generation
3D	three-dimensional
3G	third-generation
ABR	associativity-based routing
ACK	acknowledgment (frame)
A/D	analog-to-digital (conversion)
AES	Advanced Encryption System
AFR	adaptive face routing
AHLoS	ad hoc localization system
AIES	arbitration interframe space
1110	1
Algorithm KV	algorithm of Khuller and Viskhin
AMPS	Advanced Mobile Telephone System
amp	amplifier
AoA	angle of arrival
AODV	ad hoc on-demand vector (routing)
AP	access point
APS	ad hoc positioning system
APX	approximable
APXH	APX-hard
AS	autonomous system
ATIM	ad hoc traffic indication map
ATM	asynchronous transfer mode
AWA	Accessos Web Alternativos
BAIP	broadcast average incremental power
BB	budget balance
BFS	breadth first search
BGP	border gateway protocol
BI	busy indication
BIP	broadcasting incremental power
BP	aBeacon period
BPS	bounded-degree planar spanner
BPSK	binary phase shift keying
BSC	base station controller
D 50	Suse station controller

xxiv	Abbreviations	
	CA	collision avoidance (CSMA/CA often)
	CBC	cipher-block chaining (mode)
	CBT	core-based tree
	CBTC	cone-based topology control
	CCA	clear channel assessment
	CCM	combined cipher machine
	CCR	critical coverage range
	CDMA	code-division multiple-access
	CDS	connected dominating set
	CEDAR	core-extraction distributed ad hoc routing
	CFB	cipher-feedback (mode)
	CF-End	contention-free end
	CFP	contention-free period
	CF-Poll	contention-free poll
	CG	conflict graph
	CGSR	cluster-head gateway switch routing
	СМ	cross-monotone
	CNN	critical neighbor number
	СР	contention period
	CPA	closest point of approach
	CPU	central processing unit
	CRC	cyclic redundancy check
	CSMA	carrier-sense multiple-access (protocol)
	CSP	collaborative signal processing
	CT2	cordless telephone
	CTR	critical transmission range
	CTS	clear-to-send (mechanism)
	CW	contention window
	D/A	digital-to-analog (conversion)
	DAG	directed acrylic graph
	D-AMPS	digital advanced mobile phone service
	DARPA	Defense Advanced Research Projects Agency
	DC	differential cryptanalysis
	DCA	dynamic channel assignment
	DCF	distributed coordination function
	DECT4	digital European cordless telephone
	Demod	demodulator
	DES	data encryption standard
	DG	disk graph
	D-H	Diffie-Hellman
	DIFS	distributed interframe space
	DM	dense model
	D-PRMA	distributed packet-reservation multiple-access (protocol)
	DPT	distributed prediction tracking
	DRAND	a protocol that technically is defined as distributed randomized TDMA
		scheduling

Abbreviations xxv

DREAM	distance routing effect algorithm for mobility
DS	dominating set
DSA	digital-signature algorithm
DSDV	destination-sequenced distance-vector [routing (protocol)]
DSL	digital subscriber line
DSN	Distributed Sensor Networks (program)
DSP	digital signal processing
DSR	dynamic source routing
DSSS	direct-sequence spread spectrum
DST	directed Steiner tree
DT	Delaunay triangulation
DV	distance vector
DVMRP	distance-vector multicast routing protocol
EAX	designation of a two-pass authenticated encryption scheme
EC	Euler circuit
ECB	electronic codebook (mode)
ECB	elliptic curve cryptography
EDCA	enhanced DCF channel access
EDGE	enhanced data rate for GSM evolution
EFF	Electronic Frontier Foundation
EIFS	extended interframe space
ELSD	equal link split downstream
EMST	Euclidean minimum spanning tree
ERNG	extended relative neighborhood graph
ETX	expected transmission count
EXOR	name given to an opportunistic multihop routing protocol
LXOR	name given to an opportanistic martinop rotating protocor
FDMA	frequency-division multiple-access
FFT	fast Fourier transform
FGSS	fault-tolerant global spanning subgraph
FHSS	frequency-hopping spread spectrum
FIPS	Federal Information Processing Standard
FLSS	fault-tolerant local spanning subgraph
FM	frequency modulation
FNR	farthest-neighbor routing
FP	final permutation
fPrIM	fixed-protocol-interference model
FPTAS	fully polynomial-time-approximation scheme
FSK	frequency-shift-keying
GC	graph coloring
GFR	greedy-face routing
GG	Gabriel graph
GOAFR	greedy other adaptive face routing
GPRS	General Packet Radio Service
GPS	global positioning system

xxvi	Abbreviations	
	GPSR	greedy perimeter stateless routing
	GRG	geometric random graph
	GSM	Global System for Mobile Communication
	GTFT	method proposed in a paper
	НС	hybrid coordinator
	HCCA	HCF-controlled channel access
	HCF	hybrid coordination function
	HRMA	hop reservation multiple access
	IARP	intrazone routing protocol
	IBSS	independent basic service set
	IBSSID	IBSS identifier
	IC	incentive compatible
	ICDS	induced connected dominating set (graph)
	ID	identification
	IEEE	Institute of Electrical and Electronics Engineers
	IF	intermediate-frequency
	iff	if and only if
	IG	interference graph
	IMBM	iterative maximum-branch minimization
	IMRG	incident MST and RNG graph
	IMS	IP (Internet Protocol) Multimedia Subsystem
	IP	integer programming (formulation)
	IP	Internet protocol
	IP	initial permutation
	IPTV	Internet protocol television
	IR	individual rationality
	IS	independent set
	ISM	Industrial, Scientific, and Medical
	ISP	Internet service provider
	IT	information technology
	IV	initial value
	IV	initialization vector
	kbps	kilobits per second
	kbytes	kilobytes
	kNN	k-nearest-neighbor (classifier)
	LAN	local-area network
	LAR	location-aided routing
	LBM	location-based multicast
	LC	linear cryptanalysis
	LCP	least-cost path
	LCPT	least-cost path tree
	LDEL	local Delauney graph
	LEARN	localized-energy-aware restricted neighborhood (routing)
	LLACK	link-layer acknowledgment

Abbreviations xxvii

LMST	localized minimum spanning tree
LNA	low-noise amplifier
LP	linear programming
LPL	low-power listening
LSS	local spanning subgraph
LST	least-cost Steiner tree
MAC	medium-access control
MAN	metropolitan-area network
MANET	mobile ad hoc network
MAP	maximum a posteriori probability
MATSF	name of a protocol proposed in a paper (from MANET time synchronization)
MBGP	multiprotocol extension for a border gateway protocol
MBS	Mobile Broadband System
MC-CDMA	multicode CDMA
MCDS	minimum connected dominating set
MCG	mutual-communication graph
MCMT	minimum-cost multicast tree
MCU	microcontroller unit
MDS	minimum dominating set
MEMS	Micro-Electro-Mechanical Systems
MFR	most-forwarding routing
MG	mutual-inclusion graph
MGC	minimum graph-coloring (problem)
MIB	management information base
MIMO	multiple-input multiple-output
MIP	multicast independent protocol
MIS	maximum independent set
ML	maximum-likelihood (classifier)
MMAC	multichannel MAC
MNP	monotone nonincreasing property
Mod	modulator
MOSPF	multicast open shortest path first
MPR	multipoint relay
MSC	mobile switching center
MST	minimum spanning tree
MUP	multiradio unification protocol
MVC	minimum vertex cover
MWCDS	minimum weighted connected dominating set
MWIS	maximum weighted independent set
MWVC	maximum weighted vertex cover
NAV	network allocation vector
NFR	no-free-rider
NIC	network interface card
NIST	National Institute of Standards and Technology
NNG	nearest-neighbor graph

xxviii	Abbreviations	
	NNR	nonnegative sharing
	NP	nondeterministic polynomial
	NPH	NP-Hard
	NST	node-weighted Steiner tree
	OAFR	other adaptive face routing
	OCB	offset codebook (mode)
	OFB	output feedback (mode)
	OFDM	orthogonal frequency-division multiplexing
	OFSF	orthogonal fixed-spreading-factor (code)
	OLSR	optimized link-state routing (protocol)
	OSPF	open shortest path first
	OURS	optimal unicast routing system
	OVSF	orthogonal variable-spreading-factor (code)
	PA	power amplifier
	PACS	personal-access communications systems
	PAN	personal-area network
	P-BIP	pruned broadcasting incremental power
	PC	point coordinator
	PCF	point coordination function
	PCI	peripheral component interconnect
	PDA	personal digital assistant
	PhIM	physical-interference model
	PHY	physical-layer (specification)
	PI	planar and internal-node
	PIFS	point-coordination-function interframe space
	PIM-SM	protocol-independent multicast-sparse mode
	PKCS	Public Key Cryptography Standard
	P-MST	pruned minimum spanning tree
	POMDP	partially observable Markov decision process
	РР	primal linear programming
	PrIM	protocol-interference model
	PRMA	packet-reservation multiple-access (scheme)
	PS	power-save (state or mode)
	PSM	power-saving mode
	P-SPT	pruned shortest-path tree
	PSTN	public-switched telephone network
	PTAS	polynomial-time-approximation scheme
	PTC	polynomial-time computability
	PTDMA	probabilistic time-division multiple access
	QAM	quadrature amplitude modulation
	QoS	quality of service
	QPSK	quadrature phase-shift keying
	RAD	random-assessment delay
	RAM	random-access memory

Abbreviations xxix

RBOP	related neighborhood-graph-based broadcast-oriented protocol		
RF	radio frequency		
RIP	routing information protocol		
RNG	relative neighborhood graph		
RON	resilient overlay network		
RP	rendevous point		
RPB	reverse-path-broadcasting (scheme)		
RPF	reverse-path forwarding (lookup)		
RREP	route reply		
RREQ	route request		
RSA	Rivest-Shamir-Adleman		
RSS	received signal strength		
RTS	request-to-send (mechanism)		
RWP	random-waypoint (model)		
Rx	receive		
SBT	share-based tree		
SCADA	supervisory control and data acquisition		
SCH	set-cover hard		
SIFS	short interframe space		
SINR	signal-to-interference-noise ratio		
SIR	signal-to-interference ratio		
SMS	short messaging service		
SOP	spectrum opportunity		
SPAN	a topology maintenance protocol proposed by Chen <i>et al.</i> (2002)		
SPF	shortest path first		
SPS	Standard Positioning Service		
SPT	shortest-path tree		
SSCH	slotted seeded channel hopping (protocol)		
SSR	signal stability routing		
SSR	security stochastic routing		
STASF	a synchronization protocol proposed in a paper by Zhou and Lai (2005)		
SURAN	Survivable Radio Network (project)		
SVM	support vector machine		
	support vector machine		
ТА	trust authority		
TACS	Total Access Communications System		
TATSF	a synchronization protocol proposed in a paper		
TBTT	target Beacon transmission time		
TC	traffic class		
ТСР	transmission control protocol		
TDM	time-division multiplexing		
TDMA	time-division multiple-access		
TDoA	time difference of arrival		
ТоА	time of arrival		
TORA	temporarily ordered routing algorithm		
TSF			
TSF Tx	timing synchronization function transmit		
1 А	u anonint		

XXX	Abbreviations		
	TxIM	transmitter-interference model	
	ТхоР		
	TXOF	transmit opportunity	
	UDG	unit disk graph	
	UDP	user data-gram protocol	
	UMTS	Universal Mobile Telecommunication System	
	UPVCS	undirected minimum-power k-vertex-connected subgraph	
	US	ultrasound	
	UWB	ultrawideband	
	UWCDS	unicast weighted connected dominating set	
	VC	Vapnik and Chervonenkis	
	VCG	Vickrey–Clarke–Groves (mechanism)	
	VCO	voltage-controlled oscillator	
	VHF	very-high-frequency	
	VMST	virtual minimum spanning tree	
	VoIP	voice over IP	
	VOR	VHF omnidirectional ranging (aircraft navigation system)	
	VoWIP	voice over wireless IP	
	WAN	wireless ad hoc network	
	WCDMA	wideband code-division multiple-access	
	WCDS	weighted connected dominating set	
	WEP	wired equivalent privacy (encryption)	
	WiFi	common name used to refer to a wireless local-area network	
	WiMAX	Worldwide Interoperability for Microwave Access	
	WINS	a type of sensor node by Rockwell	
	WLAN	wireless local-area network	
	WMAN	wireless metropolitan-area network	
	WMN	wireless mesh network	
	WPA	WiFi protected access (mode)	
	WPAN	wireless personal-area network	
	WRP	wireless routing protocol	
	WSN	wireless sensor network	
	WWAN	wireless wide-area network	
	WWiSE	Worldwide Spectrum Efficiency (standard)	
	YG	Yao graph	