By most estimates, global consumption of natural gas – a cleaner-burning alternative to coal and oil for electric power and other applications – will double by 2030. However, in North America, Europe, and South and East Asia, the projected consumption of gas is expected to far outstrip indigenous supplies. Delivering gas from the world’s major reserves to the future demand centers will require a major expansion of inter-regional, cross-border gas transport infrastructures.

This book investigates the implications of this shift, utilizing historical case studies as well as advanced economic modeling to examine the interplay between economic and political factors in the development of natural gas resources. The contributors aim to shed light on the political challenges which may accompany a shift to a gas-fed world.

DAVID G. VICTOR is Director of the Program on Energy and Sustainable Development at the Freeman Spogli Institute for International Studies, Stanford University.

AMY M. JAFFE is Wallace S. Wilson Fellow for Energy Studies at the James A. Baker III Institute for Public Policy, Rice University.

MARK H. HAYES is a Research Fellow at the Program on Energy and Sustainable Development, Freeman Spogli Institute for International Studies, Stanford University.
Natural Gas and Geopolitics

From 1970 to 2040

Edited by

David G. Victor, Amy M. Jaffe, and Mark H. Hayes
Contents

<table>
<thead>
<tr>
<th>List of figures</th>
<th>page vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of tables</td>
<td>x</td>
</tr>
<tr>
<td>List of boxes</td>
<td>xii</td>
</tr>
<tr>
<td>List of contributors</td>
<td>xiii</td>
</tr>
<tr>
<td>Foreword by James A. Baker, III</td>
<td>xv</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xvii</td>
</tr>
<tr>
<td>List of acronyms and abbreviations</td>
<td>xx</td>
</tr>
</tbody>
</table>

Part I Introduction and context

1 Introduction to the study
JOE BARNES, MARK H. HAYES, AMY M. JAFFE, AND DAVID G. VICTOR
3

Part II Historical case studies

2 Introduction to the historical case studies: research questions, methods and case selection
MARK H. HAYES AND DAVID G. VICTOR
27

3 The Transmed and Maghreb projects: gas to Europe from North Africa
MARK H. HAYES
49

4 Liquefied natural gas from Indonesia: the Arun project
FRED VON DER MEHDEN AND STEVEN W. LEWIS
91

5 Bypassing Ukraine: exporting Russian gas to Poland and Germany
NADEJDA M. VICTOR AND DAVID G. VICTOR
122

6 Natural gas pipelines in the Southern Cone
DAVID R. MARES
169
Contents

7 International gas trade in Central Asia: Turkmenistan, Iran, Russia, and Afghanistan
 MARTHA BRILL OLCOTT 202

8 Liquefied natural gas from Qatar: the Qatargas project
 KOHEI HASHIMOTO, JAREER ELASS, AND STACY L. ELLEK 234

9 Liquefied natural gas from Trinidad & Tobago: the Atlantic LNG project
 ROB SHEPHERD AND JAMES BALL 268

10 Politics, markets, and the shift to gas: insights from the seven historical case studies
 MARK H. HAYES AND DAVID G. VICTOR 319

Part III International gas trade economics

11 The Baker Institute World Gas Trade Model
 PETER HARTLEY AND KENNETH B. MEDLOCK, III 357

12 Political and economic influences on the future world market for natural gas
 PETER HARTLEY AND KENNETH B. MEDLOCK, III 407

13 Market structure in the new gas economy: is cartelization possible?
 AMY M. JAFFE AND RONALD SOLIGO 439

Part IV Implications

14 Conclusions
 AMY M. JAFFE, MARK H. HAYES, AND DAVID G. VICTOR 467

Appendix: Technical notes
 NADEJDA M. VICTOR 484

Index 488
Figures

1.1 Global primary energy consumption, by fuel page 8
1.3 World trade in natural gas, 1970–2004 ... 11
1.4 The international gas trade projects examined in this book 19
2.1 Case selection: ensuring variation in outcomes 40
3.1 Gas pipelines and LNG facilities: Algeria, Italy, and Spain 50
3.2 Algeria: primary energy supply, by fuel, 1965–2004 52
3.3 Algeria: natural gas production, consumption, and exports, 1970–2004 ... 53
3.4 Italy: primary energy supply, by fuel, 1965–2004 55
3.5 Italy: gas consumption, by sector, 1960–1995 55
3.6 Italy: sources of natural gas, 1965–2002 57
3.7 International oil prices, 1965–2004 ... 62
3.8 Algeria: export revenues, by source, 1965–2000 72
3.9 Spain: primary energy supply, by fuel, 1965–2004 76
4.1 Natural gas infrastructure: Indonesia, Malaysia, and Brunei 93
4.2 Japanese imports of LNG, by country, 1969–2001 96
4.3 Japan: primary energy supply, by fuel, 1965–2003 97
5.1 Primary energy production on Soviet territory, 1913–2002 127
5.2 The shifting geography of Soviet and Russian gas production, 1960–1998 ... 128
5.3 Production, consumption, and international trade of gas on Soviet territory, 1965–2001 ... 129
5.4 Composition of Soviet gas exports to Europe, 1970–2001 130
List of figures

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>Soviet and Russian earnings from gas export, 1975–2003</td>
<td>133</td>
</tr>
<tr>
<td>5.6</td>
<td>Major Soviet and Russian gas export routes, 2003</td>
<td>136</td>
</tr>
<tr>
<td>5.7</td>
<td>Germany: primary energy consumption, by fuel, 1965–2003</td>
<td>150</td>
</tr>
<tr>
<td>5.8</td>
<td>Poland: primary energy consumption, by fuel, 1965–2003</td>
<td>153</td>
</tr>
<tr>
<td>6.1</td>
<td>South America: international gas pipelines</td>
<td>170</td>
</tr>
<tr>
<td>6.3</td>
<td>Chile: primary energy mix, 1975–2000</td>
<td>177</td>
</tr>
<tr>
<td>6.4</td>
<td>Brazil: primary energy supply, 1975–2000</td>
<td>185</td>
</tr>
<tr>
<td>7.1</td>
<td>Existing and proposed Turkmen gas export pipeline routes</td>
<td>204</td>
</tr>
<tr>
<td>7.2</td>
<td>Turkmenistan: natural gas balance, 1990–2003</td>
<td>206</td>
</tr>
<tr>
<td>7.3</td>
<td>Turkmenistan: key economic indicators, 1992–2003</td>
<td>206</td>
</tr>
<tr>
<td>8.1</td>
<td>Greater Persian Gulf region</td>
<td>235</td>
</tr>
<tr>
<td>8.2</td>
<td>Qatar: gas infrastructure</td>
<td>236</td>
</tr>
<tr>
<td>8.3</td>
<td>Qatar: oil production and revenues, 1971–2002</td>
<td>239</td>
</tr>
<tr>
<td>8.4</td>
<td>Qatar: natural gas output, 1980–2001</td>
<td>245</td>
</tr>
<tr>
<td>9.1</td>
<td>Trinidad & Tobago: gas infrastructure</td>
<td>271</td>
</tr>
<tr>
<td>9.2</td>
<td>US gas supply and demand, 1980–2004</td>
<td>273</td>
</tr>
<tr>
<td>9.3</td>
<td>Henry Hub historic prices, 1990–2005</td>
<td>274</td>
</tr>
<tr>
<td>9.6</td>
<td>New England: natural gas infrastructure</td>
<td>278</td>
</tr>
<tr>
<td>9.7</td>
<td>Unit cost for a 3mtpa LNG plant, 1965–1990</td>
<td>284</td>
</tr>
<tr>
<td>9.8</td>
<td>Integrated project with f.o.b. sales</td>
<td>291</td>
</tr>
<tr>
<td>9.9</td>
<td>Transfer pricing arrangement</td>
<td>292</td>
</tr>
<tr>
<td>9.10</td>
<td>Tolling arrangement</td>
<td>292</td>
</tr>
<tr>
<td>9.11</td>
<td>Atlantic LNG Train 1 structure</td>
<td>298</td>
</tr>
<tr>
<td>9.12</td>
<td>Atlantic LNG Trains 2 and 3 structures</td>
<td>307</td>
</tr>
<tr>
<td>11.1</td>
<td>Historical demand for natural gas, selected countries, 1980–2004</td>
<td>362</td>
</tr>
<tr>
<td>11.2</td>
<td>Long-run gas demand curve for different per capita GDP levels</td>
<td>365</td>
</tr>
<tr>
<td>11.3</td>
<td>The hypothetical supply of a gas substitute, 2020–2100</td>
<td>369</td>
</tr>
<tr>
<td>11.4</td>
<td>Proved natural gas reserves, by region, 2003</td>
<td>371</td>
</tr>
<tr>
<td>11.5</td>
<td>Undiscovered natural gas, by region, 2000 estimates</td>
<td>371</td>
</tr>
<tr>
<td>11.6</td>
<td>Estimated long-run cost of supply curves, selected regions</td>
<td>372</td>
</tr>
<tr>
<td>11.7</td>
<td>LNG transportation network</td>
<td>375</td>
</tr>
</tbody>
</table>
List of figures

11.8 LNG liquefaction, capital costs 377
11.9 Technological progress in LNG capital costs, 1995–2040 379
11.10 Gas supply projections: major countries or regions, 2002–2040 381
11.11 Gas demand, net of transport fuel and backstop supply, 2002–2040 383
11.12 Major natural gas trades between regions, 2002–2040 384
11.13 LNG importers, 2002–2040 384
11.14 LNG exporters, 2002–2040 385
11.15 Selected regional price projections, 2002–2040 388
12.1 Reference case results, 2002–2040 414
12.2 Reference case, selected prices, 2002–2040 416
12.3 No pipelines from Russia to northeast Asia: results, 2002–2040 420
12.4 Decadal average price changes from the reference case, 2002–2040 424
12.5 Higher Chinese demand growth results, 2002–2040 426
12.6 Changes in backstop demand, alternative technology case, 2020–2040 431
12.7 Alternative technology case results, 2002–2040 432
13.1 Dominant-firm equilibrium 451
Tables

1.1 Seven historical case studies, with brief descriptions

2.1 Projected major inter-regional trade and representative country routes

2.2 Range of relevant values for major projected international gas trade routes

2.3 Proposed case study pairs/clusters: built projects selected from the larger “universe of cases”

2.A Universe of built projects that involve difficult investment environments

3.1 Transmed: technical details

3.2 Transmed: contracted volumes, 1977

3.3 Transmed: financial details

3.4 Transmed: revised contract volumes, 1983

3.5 Factors common to both projects

3.6 Factors varying across the two projects

5.1 Russia’s major international gas export lines, 2003

5.2 Gas balances for key countries along the BC, 2001

5.A Russian earnings from oil and gas export, 1994–2004

6.1 GasAndes: ownership structure

6.2 Brazil: gas market assessment, circa 1993

6.3 GasBol: ownership structure

6.4 GasBol: sources of funding

7.1 Turkmenistan: trade balance, 1997–2001

7.2 CentGas: ownership structure

7.A Foreign firms involved in the Turkmen oil and gas sectors

7.B Turkmenistan: major natural gas deposits

8.1 Qatargas: ownership structure

8.2 Qatargas: sales contracts, 1994

8.3 LNG shipping costs to Japan (Sodegaura), early 1990s

8.A Timeline of important events
List of tables

9.1 Gas-based projects in Trinidad & Tobago, 1985 272
9.2 Ownership of upstream gas, LNG plants, and LNG sales 296
10.1 Top holders of world gas reserves, production, and exports, and their attractiveness to investors 324
10.2 The role of the state in “creating gas demand” 326
10.3 Contract interruptions, from the seven case studies 332
10.4 LNG exporters, 2003 342
11.1 Indicative LNG costs, 2002 378
11.A Estimated LNG shipping costs for the route structure in figure 11.16 396
11.B Gas supply projections, selected regions and years 398
11.C Gas demand projections, selected regions and years 402
12.A Risk premium adjustments 436
13.1 Distribution of oil and gas reserves, 2003 442
13.2 Distribution of net exports of oil and gas, 2002 443
13.3 Reserve and production shares for oil and gas 444
13.4 OPEC production and spare capacity, 1979–2003 450
13.5 Projected share of total gas exports, by country, 2010–2040 460
A.1 Typical gas composition of natural gas 485
A.2 Natural and LNG conversion factors 487
A.3 Conversion coefficients of natural gas, from m³ into Btu, for the key countries included in this book 487
Boxes

1.1 What is natural gas?........... page 6
1.2 What is LNG?.................. 10
8.1 Japanese financing for LNG projects: from Brunei to Qatargas........ 254
Contributors

JAMES BALL President and Chief Mentor, Gas Strategies Consulting Ltd, London

JOE BARNES Research Fellow, James A. Baker III Institute for Public Policy, Rice University

JAREER ELASS Consultant, James A. Baker III Institute for Public Policy, Rice University

STACY L. ELLER Graduate Student Researcher, James A. Baker III Institute for Public Policy, Rice University

PETER HARTLEY Chair, Department of Economics, Rice University

KOHEI HASHIMOTO Professor, Nihon University

MARK H. HAYES Research Fellow, Program on Energy and Sustainable Development, Freeman Spogli Institute for International Studies, Stanford University

AMY M. JAFFE Wallace S. Wilson Fellow for Energy Studies, James A. Baker III Institute for Public Policy, Rice University

STEVEN W. LEWIS Research Fellow, James A. Baker III Institute for Public Policy, Rice University

DAVID R. MARES Professor, Department of Political Science, University of California, San Diego

KENNETH B. MEDLOCK, III Research Fellow, James A. Baker III Institute for Public Policy, Rice University

FRED VON DER MEHDE M Professor Emeritus, Department of Political Science, Rice University

MARTHA BRILL OLCCOTT Senior Associate, Carnegie Endowment for International Peace, Washington, DC
List of contributors

ROB SHEPHERD Senior Consultant, Gas Strategies Consulting Ltd, London

RONALD SOLIGO Professor, Department of Economics, Rice University

DAVID G. VICTOR Director, Program on Energy and Sustainable Development, Freeman Spogli Institute for International Studies, Stanford University

NADEJDA M. VICTOR Research Fellow, Program on Energy and Sustainable Development, Freeman Spogli Institute for International Studies, Stanford University
Foreword

James A. Baker, III

The publication of *Natural Gas and Geopolitics: From 1970 to 2040* could not be timelier. The sharp rise of oil and gas prices that began in 2003 has returned energy to the top of the US public policy agenda. We have been reminded, yet again, of the centrality of energy to our and the world’s economic well-being. Discussion has now turned to the domestic policies and international initiatives that can help ensure a stable, reasonably priced supply of energy to global markets through the middle of the twenty-first century and beyond.

One thing is certain: natural gas will play a critical role in meeting the world’s energy needs. A series of important economic, political, and technological factors – the growing global demand for energy, the ongoing deregulation of gas and electrical markets, a preference for gas as the cleanest of the hydrocarbons, and declines in the cost of producing and transporting liquefied natural gas (LNG) – have laid the groundwork for an expanded role for natural gas in the world economy.

But there are a host of obstacles to seizing the full potential of natural gas. While increased trade in LNG opens up the possibility of a truly global market for gas, the pace and ultimate scope of this historic development remains very much in doubt. The shift from governments to the private sector as lead players in major pipeline and LNG projects, though welcome, raises important questions of investor confidence, regulatory environment, political risk, and competition from other hydrocarbon fuels and renewable energy sources. The amount of private investment required – by some estimates, up to 3 trillion dollars over the next quarter-century – is simply immense. Any number of factors – from the threat of terrorism to a retreat from market liberalization – could make raising these sums problematic.

The rise of natural gas also poses thorny geopolitical questions. The lion’s share of proven gas reserves are found in areas, like the Middle East and the countries of the former Soviet Union, characterized by regional tensions and political instability. The concentration of these reserves in a relatively few countries raises, at least in theory, the possibility of a producers’ cartel or “gas OPEC.” These are issues that US policy-makers cannot afford to ignore. Long largely self-sufficient in natural gas, the United States will be increasingly dependent on imports during the years and decades ahead.

Natural Gas and Geopolitics: From 1970 to 2040 marks an important step in addressing these and other crucial issues. It is the result of a multi-year study organized by Rice University’s James A. Baker III Institute for Public Policy and Stanford University’s Program on Energy and Sustainable Development. The study assembled a team of prominent economists, political scientists, and energy experts from the United States and around the world to address the future of natural gas. Their impressive work includes case studies, economic models, and analytic essays.

I would like to commend editors David G. Victor, Amy M. Jaffe, and Mark H. Hayes for organizing the study and producing this invaluable volume. The national and international debate over the role of natural gas in the global economy is in many ways still in its infancy. Natural Gas and Geopolitics: From 1970 to 2040 will provide an insightful and comprehensive introduction to these issues for policy-makers, scholars, industry executives, and concerned citizens alike.
Acknowledgments

In 2002, the Energy Forum of the James A. Baker III Institute for Public Policy at Rice University and the Program on Energy and Sustainable Development at the Freeman Spogli Institute for International Studies, Stanford University, began a joint effort to investigate the geopolitical consequences of a major shift to natural gas in world energy markets. We are grateful to our many collaborators and funders for their interest in the long-term evolution of this important industry, its consequences for the economy and environment, and implications for politics and policy.

The Baker Institute Energy Forum thanks project sponsors Baker Botts LLP and Ambassador and Mrs. Hushang Ansary for their generous support of this research. In addition, the Institute thanks its Energy Forum members for their ongoing support and advice for this project. The Program on Energy and Sustainable Development is grateful for core funding from the Electric Power Research Institute and BP plc, which made its participation in this study possible.

We thank the many collaborators and reviewers who have participated in the study. The collaborative research began in earnest at an October 2002 kickoff meeting at Stanford, and we thank the participants for their focused critique of our research plans and methods.

We commissioned several historical case studies, and in November 2003 at Stanford the authors presented drafts for review. (The final versions of these studies are in chapters 3–9 of this book, with more detailed working papers on our websites–http://pesd.stanford.edu and http://rice.edu/energy.) In parallel, the Rice modeling team developed a model to allow projections of gas trade into the future, and initial results were presented at a review meeting in Houston in March 2004. We are enormously grateful to the several dozen participants and reviewers at those two meetings.

We would also like to thank Altos Management Partners for the donation of their software platform Marketbuilder for use during this study and to Hill Huntington and the US Department of Energy for their comments and critique of the model through Stanford's Energy...
Modeling Forum and during private sessions over the study period. (Final versions of those studies are in chapters 11–13, along with online working papers.)

In May 2004 we convened a major conference in Houston to present the initial findings from the study. We are especially grateful to the many speakers and panelists and especially Baker Botts LLP and Shell Exploration & Production Company that, along with our core funders, made that meeting possible. We would like to thank our conference keynote speakers: the Honorable James A. Baker, III, Baker Institute Honorary Chair; Philip Dingle, President, ExxonMobil Gas and Power Marketing Company; Ambassador Edward Djerejian, Baker Institute director; H.E. Abdullah bin Hamad Al-Attiyah, Minister of Energy and Industry of Qatar; Peter Hughes, Executive Vice President, Group Strategy, BG Group plc (then with BP plc); H.E. Dr. Chakib Khelil, Minister of Energy and Mines, People’s Democratic Republic of Algeria; Tomiyuki Kudo, President, Petroleum Energy Center of Japan; James Mulva, President and CEO of ConocoPhillips; and Congressman Francisco Xavier Salazar Diez Sollano, Chairman, Energy Commission, Mexican Chamber of Deputies, for taking the time to share their unique insights on the geopolitics of natural gas. We would especially like to thank Molly Hipp, Sonja Dimitrijevich, Ryan Kirksey and Jason Lyons at the Baker Institute for organizing a seamless event, along with Jack Hogan, Ale Núñez-Luna, and Kassia Yanosek who traveled from Stanford to provide critical support.

In addition to the capstone conference in Houston, we have benefited from comments at various seminars where we have presented the study findings. These include seminars at UC Berkeley, the Graduate School of Business at Stanford, and also Stanford’s Center for Development, Democracy, and the Rule of Law.

We owe particular gratitude to George H.B. Verberg, President of the International Gas Union and Bert Panman, Chairman of the IGU Coordination Committee for providing our research a prestigious position at the 23rd World Gas Conference in June 2006.

The breadth and depth of this volume is a product of the extensive contributions of our co-authors. Our conclusions rest upon their in-depth research. Their patience with our lengthy review process is duly appreciated.

This manuscript would not have reached publication were it not for the countless hours of support from the staffs at our respective institutions and the work of our editors at Cambridge University Press. At Stanford—Becca Elias, Josh House, Rose Kontak, Michelle Klippel, and Bob Sherman provided critical support, especially in the busiest times;
Meredith Williams and Becca Newton-Thompson, also at Stanford, deserve full credit for the maps included in the case study chapters. At the Baker Institute, Jill Nesbitt, Jillene Connors, Christina Estrada, and Laura Iszar often burned the midnight oil in aid of this massive project. Our editors at Cambridge, Chris Harrison, Lynn Dunlop, and Elizabeth Davey, and our copy-editor Barbara Docherty, were a pleasure to work with throughout the publication process.

Finally, we thank our family and friends, who supported us through the many evenings and weekends leading up to the production of this effort.

DAVID G. VICTOR
Stanford, California

AMY M. JAFFE
Houston, Texas

MARK H. HAYES
Stanford, California
Acronyms and abbreviations

ADB Asian Development Bank
ADR American Depositary Receipts
Agip Italy's state oil company
AIC Association of International Cooperation (Russia)
ALADI Asociación Latinoamericana de Integración
ALNG Atlantic LNG
AP alternative project
APCI Air Products & Chemicals, Inc., with trademark process for natural gas liquefaction
APERC Asia Pacific Energy Research Center
Apicorp Arab Petroleum Investments Corporation
ASEAN Association of Southeast Asian States
BBE Bahia de Bizkaia Electricidad
BC Belarus Connector
Bcf/d billion cubic feet per day
Bcm billion cubic meters
b/d barrels (of oil) per day
BIWGTMM Baker Institute World Gas Trade Model
BNDES Brazilian National Development Bank
Botas Turkey’s monopoly gas importer
BTC Baku–Tbilisi–Ceyhan (oil pipeline)
BTE Baku–Tbilisi–Erzurum (gas pipeline)
Bu British thermal unit
Btu/cm British thermal unit/cubic meter
CAC Central-Asia-Center (Turkmen–Russia gas pipeline)
CAF Corporación Andina de Fomento, Andean Development Corporation
CAMEL Compagnie Algérienne de Méthane Liquide
CBM coal-bed methane
CCGT combined cycle gas turbine
CEE Central and Eastern European
CEO chief executive officer

xx
List of acronyms and abbreviations

CEPSA Compañía Española de Petróleos SA
CGG Compañía General de Combustibles SA (Argentina)
c.i.f. cost-insurance-freight
CIPE Center for International Private Enterprise
CIS Commonwealth of Independent States
CMEA Council for Mutual Economic Assistance (COMECON)
CNG compressed natural gas
CNOOC China National Offshore Oil Corp.
COMECON see CMEA
Copec Compañía de Petroleos de Chile
CPI Consumer Price Index (US)
d.e.s. destination ex-ship
EBRD European Bank for Reconstruction and Development
EC European Community
ECAFE UN Economic Commission for Asia and the Far East
 (later ESCAP)
ECE United Nations Economic Commission for Europe
ECO Economic Cooperation Organization
EEC European Economic Community
EFTA European Free Trade Association
EGU Enhanced Gas Utility (Qatar)
EIA Energy Information Administration (US)
EIB European Investment Bank
EIU Economist Intelligence Unit
ENAP Empresa Nacional de Petroleo, Chile’s national oil company
ENI Ente Nazionale Idrocarburi (National Hydrocarbon Corporation, Italy)
EPC engineering, procurement, construction
ESCAP UN Economic and Social Commission for Asia and the Pacific
EU European Union
FBIS Foreign Broadcast Information Service
FDI foreign direct investment
FEED front-end engineering and design
FID final investment decision
FIESP Federação das Indústrias de Estado de São Paulo
FLN Front de Libération Nationale (Algeria)
f.o.b. freight-on-board
FSU Former Soviet Union
Gasbol Bolivia–Brazil gas pipeline
List of acronyms and abbreviations

GCC Gulf Cooperation Council
GCV Gross Calorific Value
GdF Gaz de France
GDP gross domestic product
GECF Gas Exporting Countries Forum
GIRI General Investment Risk Index
GLS generalized least squares
GME Gaz Maghreb Europe (“Maghreb pipeline”)
GTB Gas Transboliviano SA
GTL gas-to-liquids
GW gigawatt
ha hectare
HHV high heating value
IADB Inter-American Development Bank
ICC International Chamber of Commerce
ICJ International Court of Justice
ICRG International Country Risk Guide
ICSID International Center for the Settlement of Investment Disputes
IEA International Energy Agency (Paris)
IFC International Finance Corporation (part of the World Bank)
IGCC Integrated gasification combined cycle
ILSA Iran and Libya Sanctions Act
IMF International Monetary Fund
IOC international oil company
IRNA Islamic Republic News Agency (Iran)
ISOCOTT Iron and Steel Company of Trinidad & Tobago
IV independent variable – investment climate, number of transit countries for a particular gas trade project, etc.
JCC Japanese Customs Clearing Price, often referred to as the “Japanese Crude Cocktail”
JCCME Japan Cooperation Center for Middle East
J-EXIM Export–Import Bank of Japan (now Japan Bank for International Cooperation, JBIC)
JILCO Japan Indonesia LNG Company
JMG Joint Management Group (Indonesia)
JNOC Japan National Oil Corporation
JV joint venture
JVA joint-venture agreement
kj/cm kilojoules/cubic meter
km kilometer
List of acronyms and abbreviations

KOGAS Korea Gas Corporation
KWh kilowatt hours
LHV low heating value
LIBOR London Interbank Offered Rate
LNG liquefied natural gas
LPG liquid petroleum gas
m meter
Maphilindo Malaysia, the Philippines, Indonesia
MarAd Maritime Administration (US)
MBOE million barrels of oil equivalent
mcm thousand cubic meters
Mercosur Mercado Común del Sur, Southern Common Market
METI Ministry of Economy, Trade, and Industry (Japan)
MFN most-favored nation
MITI Ministry of International Trade and Industry (Japan), now METI
MLA multi-lateral lending agency
mm millimeter
mmBtu million British thermal units
mmHg mm of mercury (measure of pressure)
MNC multi-national corporation
MNR Movimiento Nacionalista Revolucionario (Bolivia)
MOU memorandum of understanding
Mtoe million tonnes of oil equivalent
mtpa million tonnes per annum
MW megawatt
NAFTA North American Free Trade Agreement
NAR National Alliance for Reconstruction (Trinidad & Tobago)
NATO North Atlantic Treaty Organization
NCV Net Calorific Value
NEGP North European Gas Pipeline
NGC National Gas Company (Trinidad & Tobago)
NGLs natural gas liquids
NGO non-governmental organization
NIGC National Iranian Gas Company
NIOC National Iranian Oil Company
NLNG Nigeria LNG
NNPC Nigerian National Petroleum Company
NPC National Petroleum Council (US)
NPV net present value
NYMEX New York Mercantile Exchange
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O&M</td>
<td>operating and maintenance (costs)</td>
</tr>
<tr>
<td>OAS</td>
<td>Organization of American States</td>
</tr>
<tr>
<td>OECD</td>
<td>Organization for Economic Cooperation and Development</td>
</tr>
<tr>
<td>OPEC</td>
<td>Organization of Petroleum Exporting Countries</td>
</tr>
<tr>
<td>OPIC</td>
<td>Overseas Private Investment Corporation (US)</td>
</tr>
<tr>
<td>PDVSA</td>
<td>Petróleos de Venezuela SA., Venezuela’s national oil company</td>
</tr>
<tr>
<td>PESD</td>
<td>Program on Energy and Sustainable Development (Stanford University)</td>
</tr>
<tr>
<td>PG&E</td>
<td>Pacific Gas and Electric Company (US)</td>
</tr>
<tr>
<td>PGNiG</td>
<td>Polskie Górnictwo Naftowe Gazownictwo, Polish Oil and Gas Company</td>
</tr>
<tr>
<td>PNM</td>
<td>People’s National Movement (Trinidad & Tobago)</td>
</tr>
<tr>
<td>PSA</td>
<td>production-sharing agreement</td>
</tr>
<tr>
<td>PSC</td>
<td>production-sharing contract</td>
</tr>
<tr>
<td>PV</td>
<td>present value</td>
</tr>
<tr>
<td>QP</td>
<td>Qatar Petroleum (formerly Qatar General Petroleum Company, QGPC)</td>
</tr>
<tr>
<td>R&D</td>
<td>research and development</td>
</tr>
<tr>
<td>ROE</td>
<td>return on equity</td>
</tr>
<tr>
<td>SADC</td>
<td>Southern African Development Community</td>
</tr>
<tr>
<td>SADR</td>
<td>Saharan Arab Democratic Republic</td>
</tr>
<tr>
<td>SAP</td>
<td>structural adjustment program</td>
</tr>
<tr>
<td>SCC</td>
<td>specific capital cost</td>
</tr>
<tr>
<td>SCOGAT</td>
<td>Société pour la Construction du Gazoduc Transtunisien (Tunisia)</td>
</tr>
<tr>
<td>Segamo</td>
<td>Sociedad de Estudios Gasducto del Mediterráneo Occidental (Spain)</td>
</tr>
<tr>
<td>SNOC</td>
<td>Singapore National Oil Company</td>
</tr>
<tr>
<td>SOE</td>
<td>state-owned enterprise</td>
</tr>
<tr>
<td>Sonatrach</td>
<td>Société Nationale pour le Transport et la Commercialisation des Hydrocarbures (Algeria)</td>
</tr>
<tr>
<td>SOTUGAT</td>
<td>Société du Gazoduc Transtunisien (Tunisia)</td>
</tr>
<tr>
<td>SPA</td>
<td>sales and purchase agreement</td>
</tr>
<tr>
<td>TBG</td>
<td>Transportadora Brasileira Gasoduto Bolivia–Brazil SA</td>
</tr>
<tr>
<td>Tcm</td>
<td>trillion cubic meters</td>
</tr>
<tr>
<td>TCO</td>
<td>Transport Capacity Option</td>
</tr>
<tr>
<td>TCP</td>
<td>Trans-Caucasian Pipelne</td>
</tr>
<tr>
<td>TCQ</td>
<td>Transport Contract Quantity</td>
</tr>
<tr>
<td>TGN</td>
<td>Transportadora Gas del Norte (Argentina)</td>
</tr>
<tr>
<td>TJ</td>
<td>Terajoules</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>TMPC</td>
<td>Trans-Mediterranean Pipeline Company Limited</td>
</tr>
<tr>
<td>TRINGENI</td>
<td>Trinidad & Tobago Nitrogen Company</td>
</tr>
<tr>
<td>TSKJ</td>
<td>Consortium of Technip, Kellogg, Snamprogetti, and JGC</td>
</tr>
<tr>
<td>TTMC</td>
<td>Trinidad & Tobago Methanol Company</td>
</tr>
<tr>
<td>TTP</td>
<td>Turkmenistan Transcontinental Pipeline</td>
</tr>
<tr>
<td>TTPC</td>
<td>Trans-Tunisian Pipeline Company Limited</td>
</tr>
<tr>
<td>TTUC</td>
<td>Trinidad and Tobago Urea Company</td>
</tr>
<tr>
<td>UAE</td>
<td>United Arab Emirates</td>
</tr>
<tr>
<td>UES</td>
<td>United Energy System (Russian state electric power enterprise)</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>UNC</td>
<td>United National Company (Trinidad & Tobago)</td>
</tr>
<tr>
<td>UOG</td>
<td>UAE Offsets Group</td>
</tr>
<tr>
<td>USD</td>
<td>US dollar</td>
</tr>
<tr>
<td>USGS</td>
<td>United States Geological Survey</td>
</tr>
<tr>
<td>USSR</td>
<td>Union of Soviet Socialist Republics, Soviet Union</td>
</tr>
<tr>
<td>VALHYD</td>
<td>Hydrocarbon Development Plan of Algeria</td>
</tr>
<tr>
<td>VAT</td>
<td>value added tax</td>
</tr>
<tr>
<td>VNG</td>
<td>East German gas transmission company</td>
</tr>
<tr>
<td>WACC</td>
<td>weighted average cost of capital</td>
</tr>
<tr>
<td>WEC</td>
<td>World Energy Council</td>
</tr>
<tr>
<td>WIEE</td>
<td>Wintershall Erdgas Handelshaus Zug AG</td>
</tr>
<tr>
<td>WIEH</td>
<td>Wintershall Erdgas Handelshaus GmbH</td>
</tr>
<tr>
<td>YABOG</td>
<td>Bolivia–Argentina gas pipeline</td>
</tr>
<tr>
<td>YPF</td>
<td>Yacimientos Petrolíferos Federales (Argentine gas consortium)</td>
</tr>
<tr>
<td>YPFB</td>
<td>Yacimientos Petrolíferos Fiscales de Bolivia, Bolivian national oil company</td>
</tr>
</tbody>
</table>