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Preface

In this book, we introduce a fundamental relation between algebraic geometry
and statistical learning theory.

A lot of statistical models and learning machines used in information sci-
ence, for example, mixtures of probability distributions, neural networks, hid-
den Markov models, Bayesian networks, stochastic context-free grammars, and
topological data analysis, are not regular but singular, because they are non-
identifiable and their Fisher information matrices are singular. In such models,
knowledge to be discovered from examples corresponds to a singularity, hence
it has been difficult to develop a mathematical method that enables us to under-
stand statistical estimation and learning processes.

Recently, we established singular learning theory, in which four general
formulas are proved for singular statistical models. Firstly, the log likelihood
ratio function of any singular model can be represented by the common standard
form even if it contains singularities. Secondly, the asymptotic behavior of the
evidence or stochastic complexity is clarified, giving the result that the learning
coefficient is equal to the maximum pole of the zeta function of a statistical
model. Thirdly, there exist equations of states that express the universal relation
of the Bayes quartet. We can predict Bayes and Gibbs generalization errors
using Bayes and Gibbs training errors without any knowledge of the true
distribution. And lastly, the symmetry of the generalization and training errors
holds in the maximum likelihood and a posteriori estimators. If one-point
estimation is applied to statistical learning, the generalization error is equal to
the maximum value of a Gaussian process on a real analytic set.

This book consists of eight chapters. In Chapter 1, an outline of singu-
lar learning theory is summarized. The main formulas proved in this book
are overviewed without mathematical preparation in advance. In Chapter 2, the
definition of a singularity is introduced. Resolution of singularities is the essen-
tial theorem on which singular learning theory is constructed. In Chapter 3,

vii
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viii Preface

several basic concepts in algebraic geometry are briefly explained: ring and
ideal, correspondence between algebra and geometry, and projective spaces.
The algorithm by which a resolution map is found using recursive blow-ups is
also described. In Chapter 4, the relation between the singular integral and the
zeta function of a singular statistical model is clarified, enabling some inequal-
ities used in Chapter 6 to be proved. In Chapter 5, function-valued random
variables are studied and convergence in law of empirical processes is proved.
In Chapter 6, the four main formulas are proved: the standard form of the like-
lihood ratio function, the asymptotic expansion of the stochastic complexity,
the equations of states in a Bayes quartet, and the symmetry of generalization
and training errors in one-point estimation. In Chapters 7 and 8, applications of
singular learning theory to information science are summarized and discussed.

This book involves several mathematical fields, for example, singularity
theory, algebraic geometry, Schwartz distribution, and empirical processes.
However, these mathematical concepts are introduced in each chapter for those
who are unfamiliar with them. No specialized mathematical knowledge is
necessary to read this book. The only thing the reader needs is a mathematical
mind seeking to understand the real world.

The author would like to thank Professor Shun-ichi Amari for his encour-
agement of this research. Also the author would like to thank Professor Bernd
Sturmfels for his many helpful comments on the study and this book.

In this book, the author tries to build a bridge between pure mathematics
and real-world information science. It is expected that a new research field will
be opened between algebraic geometry and statistical learning theory.

Sumio Watanabe
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