Contents

Preface ix
Acknowledgements xi
1 A brief history of spectroscopy 1
2 The relevant regions of the electromagnetic spectrum 6
 2.1 The limits of optical spectrography 8
3 Geometrical optics 10
 3.1 Rays and wavefronts 10
 3.2 Instrumental optics 11
 3.3 Centred systems 12
 3.4 Gaussian optics 12
 3.5 Optical layout 20
 3.6 Apertures, stops, fields, irises and pupils 20
 3.7 Ray bundles 23
 3.8 The Helmholtz–Lagrange invariants 23
 3.9 Surface brightness 25
 3.10 Black body radiation 25
4 Optical aberrations 28
 4.1 The Seidel aberrations 29
 4.2 Zero-order aberration 29
 4.3 First-order aberrations 29
 4.4 Theorems 35
 4.5 Aberration coefficients for mirrors 37
 4.6 The achromatic doublet 39
5 Fourier transforms: a brief revision 41
 5.1 Fourier transforms 41
 5.2 Theorems 42
 5.3 Convolutions 42
 5.4 The Wiener–Khinchine theorem 45
Contents

5.5 Useful functions 45
5.6 More theorems 49
5.7 Aliasing 51

6 Physical optics and diffraction 52
6.1 Fraunhofer diffraction 52
6.2 Two-dimensional apertures and oblique incidence 55

7 The prism spectrograph 57
7.1 Introduction 57
7.2 The traditional prism spectrograph 57
7.3 The focal curve theorem 59
7.4 The Littrow mounting 59
7.5 The Pellin–Broca prism 60
7.6 Focal isolation 61

8 The plane grating spectrograph 63
8.1 The shape of a monochromatic line spectrum 63
8.2 Blazing of gratings 67
8.3 Apodising 68
8.4 Order overlap and free spectral range 69
8.5 Grating ghosts and periodic errors 70
8.6 The complete grating equation 72
8.7 Differential dispersion 76
8.8 Mounting configurations 76

9 The concave grating spectrograph 89
9.1 The Rowland grating 89
9.2 The concave grating as a spectrograph 92
9.3 The concave grating as a monochromator 96
9.4 The aberrations of the Rowland grating 97
9.5 Practical details of design 98

10 The interference spectrograph 101
10.1 The phase angle 101
10.2 The Fabry–Perot étalon spectrograph 102
10.3 Fabry–Perot theory 102
10.4 The Fabry–Perot monochromator 104
10.5 The Fabry–Perot CCD spectrograph 108
10.6 Fore-optics 110
10.7 Reference fringes 111
10.8 Extraction of the spectrum 111
10.9 Choice of the resolution and gap 112
10.10 The ‘crossed’ Fabry–Perot spectrograph 113

© Cambridge University Press
www.cambridge.org
Contents

11 The multiplex spectrometer
11.1 The principles of Fourier spectrometry 114
11.2 The multiplex advantage 117

12 Detectors
12.1 Silver halide photography 121
12.2 Elementary electronic detectors 122
12.3 Detectors with spatial resolution 123
12.4 Exposure limitations 124
12.5 CCD software 125
12.6 CCD calibration 126
12.7 Spectrograph calibration 126

13 Auxiliary optics
13.1 Fore-optics 128
13.2 The astronomical telescope as fore-optics 130
13.3 Focal reducers 132
13.4 Schmidt-camera spectrography 134
13.5 Scattered light and baffling 134
13.6 Absorption cells 136
13.7 Fibre optical input 137

14 Optical design
14.1 First steps 139
14.2 Initial layout 139
14.3 The drawing board 140
14.4 Computer ray tracing 140
14.5 Refinement of the optical design 141
14.6 Requirements of a ray-tracing program 144

15 Mechanical design and construction
15.1 The optical layout 150
15.2 Optical materials 162
15.3 Transparent optical materials 163
15.4 Reflectors 163
15.5 Metals for construction 165
15.6 Other materials 167

16 Calibration
16.1 Sensitivity calibration 168
16.2 Wavelength calibration 169
16.3 Small spectral shifts and radial-velocity measurement 170
16.4 Absorption measurements 170
Contents

17 The alignment of a spectrograph 172
 17.1 The optical alignment 172
 17.2 The focus 173

Appendix 1 Optical aberrations 175

Appendix 2 Wavelengths of spectral lines for calibration 179

Appendix 3 The evolution of a Fabry–Perot interference spectrograph 183

Appendix 4 The common calibration curve in silver halide spectrophotometry 186

Bibliography 187

Index 188