

SPECTROGRAPH DESIGN FUNDAMENTALS

In recent years enormous changes have occurred in the field of optical spectrometry. The classical spectrometer has become obsolete and the spectrograph, in combination with the CCD detector, now offers a vastly superior approach. Although the basic optical principles remain unchanged the design considerations are very different, and in many cases more demanding. However, developments in computer ray-tracing and computer-aided design have coped with these extra impositions and have allowed the construction of a new generation of spectrographs.

The book covers the general principles of spectrographic design, and the practical and engineering aspects of a broad range of spectrographs and spectrometers. This allows the reader to make an informed choice of instrument. It will be of particular use when none of the immense array of manufactured spectrographic and spectrometric instruments is suitable for a specialised task. The book deals with materials and methods of construction and includes suggestions for the choice of optical table, the design of slit mechanisms, and adjustable mirror, grating and lens mounts, with suggestions for the alignment and calibration of the finished instrument.

Spectrograph Design Fundamentals describes the design and construction of optical spectrographs. It will be a valuable resource for academic researchers, graduate students and professionals in the fields of optics, spectroscopy and optical engineering.

JOHN JAMES is an Honorary Senior Research Fellow at the University of Glasgow and a Fellow of the Royal Astronomical Society. He is the author of *Student's Guide to Fourier Transforms*, also published by Cambridge University Press, now in its second edition.

SPECTROGRAPH DESIGN FUNDAMENTALS

J. F. JAMES

Honorary Research Fellow University of Glasgow

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

> > Cambridge University Press The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

 $www. cambridge.org\\ Information on this title: www. cambridge.org/9780521864633$

© J. F. James 2007

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2007

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN-13 978-0-521-86463-3 hardback ISBN-10 0-521-86463-1 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Prefa	Preface	
	Ackn	owledgements	xi
1	A bri	ef history of spectroscopy	1
2	The 1	6	
	2.1	The limits of optical spectrography	8
3	Geon	netrical optics	10
	3.1	Rays and wavefronts	10
	3.2	Instrumental optics	11
	3.3	Centred systems	12
	3.4	Gaussian optics	12
	3.5	Optical layout	20
	3.6	Apertures, stops, fields, irises and pupils	20
	3.7	Ray bundles	23
	3.8	The Helmholtz–Lagrange invariants	23
	3.9	Surface brightness	25
	3.10	Black body radiation	25
4	Optio	cal aberrations	28
	4.1	The Seidel aberrations	29
	4.2	Zero-order aberration	29
	4.3	First-order aberrations	29
	4.4	Theorems	35
	4.5	Aberration coefficients for mirrors	37
	4.6	The achromatic doublet	39
5	Fourier transforms: a brief revision		41
	5.1	Fourier transforms	41
	5.2	Theorems	42
	5.3	Convolutions	42
	5.4	The Wiener–Khinchine theorem	45

/1		Contents	
	5.5	Useful functions	45
	5.6	More theorems	49
	5.7	Aliasing	51
6	Physic	cal optics and diffraction	52
	6.1	Fraunhofer diffraction	52
	6.2	Two-dimensional apertures and oblique incidence	55
7	The p	rism spectrograph	57
	7.1	Introduction	57
	7.2	The traditional prism spectrograph	57
	7.3	The focal curve theorem	59
	7.4	The Littrow mounting	59
	7.5	The Pellin–Broca prism	60
	7.6	Focal isolation	61
8	The p	lane grating spectrograph	63
	8.1	The shape of a monochromatic line spectrum	63
	8.2	Blazing of gratings	67
	8.3	Apodising	68
	8.4	Order overlap and free spectral range	69
	8.5	Grating ghosts and periodic errors	70
	8.6	The complete grating equation	72
	8.7	Differential dispersion	76
	8.8	Mounting configurations	76
9	The c	oncave grating spectrograph	89
	9.1	The Rowland grating	89
	9.2	The concave grating as a spectrograph	92
	9.3	The concave grating as a monochromator	96
	9.4	The aberrations of the Rowland grating	97
	9.5	Practical details of design	98
10	The in	nterference spectrograph	101
	10.1	The phase angle	101
	10.2	The Fabry–Perot étalon spectrograph	102
	10.3	Fabry–Perot theory	102
	10.4	The Fabry–Perot monochromator	104
	10.5	The Fabry–Perot CCD spectrograph	108
	10.6	Fore-optics	110
	10.7	Reference fringes	111
	10.8	Extraction of the spectrum	111
	10.9	Choice of the resolution and gap	112
	10.10	The 'crossed' Fabry–Perot spectrograph	113

		Contents	Vii
11	The 1	multiplex spectrometer	114
	11.1	The principles of Fourier spectrometry	114
	11.2	The multiplex advantage	117
12	Detec	etors	120
	12.1	Silver halide photography	121
	12.2	Elementary electronic detectors	122
	12.3	Detectors with spatial resolution	123
	12.4	Exposure limitations	124
	12.5	CCD software	125
	12.6	CCD calibration	126
	12.7	Spectrograph calibration	126
13	Auxil	liary optics	128
	13.1	Fore-optics	128
	13.2	The astronomical telescope as fore-optics	130
	13.3	Focal reducers	132
	13.4	Schmidt-camera spectrography	134
	13.5	Scattered light and baffling	134
	13.6	Absorption cells	136
	13.7	Fibre optical input	137
14	Optical design		139
	14.1	First steps	139
	14.2	Initial layout	139
	14.3	The drawing board	140
	14.4	Computer ray tracing	140
	14.5	Refinement of the optical design	141
	14.6	Requirements of a ray-tracing program	144
15	Mech	nanical design and construction	150
	15.1	The optical layout	150
	15.2	Optical materials	162
	15.3	Transparent optical materials	163
	15.4	Reflectors	163
	15.5	Metals for construction	165
	15.6	Other materials	167
16	Calib	oration	168
	16.1	Sensitivity calibration	168
	16.2	Wavelength calibration	169
	16.3	Small spectral shifts and radial-velocity	
		measurement	170
	16.4	Absorption measurements	170

viii	Contents	
17 The alignment	ment of a spectrograph	172
17.1 The	optical alignment	172
17.2 The	focus	173
Appendix 1	Optical aberrations	175
Appendix 2	Wavelengths of spectral lines for calibration	179
Appendix 3	The evolution of a Fabry-Perot interference spectrograph	183
Appendix 4	The common calibration curve in silver halide	
	spectrophotometry	186
Bibliogra	<i>aphy</i>	187
Index		188

Preface

Thirty-eight years ago, together with my colleague the late Robert Sternberg, I wrote a book entitled *The Design of Optical Spectrometers*. It described the state of the art as it was at that time after the great advances which had come in the previous ten years, and it was intended for people who wished to build a spectrometer tailored to a specific purpose, where perhaps one of the commercial designs was inadequate, unsuitable, unnecessarily cumbersome, or expensive.

When at last the time came to consider a new edition it became clear that the technology had changed so much that the classical optical spectrometer, in the sense of *monochromator*, was more or less obsolete and that later developments such as the desktop computer and the charge-coupled device had restored the spectrograph to its former eminence. The restoration in no way annulled the optical improvements of the previous 30 years but new constraints posed new problems in design. These problems are now solved and the solutions are presented here.

The fundamentals of optical design have not changed, but the constraints are now all different, and such properties as flat fields are needed where before they could be largely ignored; and focal ratios matter again when previously we could design everything so that such trivia as spherical aberration and coma could be neglected.

There is, as always, a gap to be bridged between the elegant theory presented in the undergraduate textbooks and the practical spectroscopic instrument standing on the laboratory bench or bolted to the Cassegrain focus of an astronomical telescope. The gap is partly in the limitations imposed by the curse of non-linearity in geometrical optics and the contumacious aberrations it produces, and partly in the sometimes obstinate physical properties of the materials of construction. As always in scientific instrument making, the art is in knowing what must be precise and exact and what can be left go hang at a crude level. There are tricks in this trade just as in any other. The traditional engineer's description of a physicist is 'someone who designs a box that must be screwed together from the inside'. (There is a parallel physicist's definition of an engineer: someone who, when asked 'what

x Preface

is three times four?' will get out a slide rule and answer 'about twelve'.) There is an element of truth in this and some of the hints in these pages may help to refute the calumny.

This work is thus intended for the new generation of researchers who desire high efficiency in an instrument tailored to their own particular purpose, and who have access to a mechanical workshop of moderate size where an instrument of their design can be constructed. There has been no attempt to venture into the new fields of optical resonant scattering spectroscopy, tunable laser spectroscopy or other specialised techniques and so the book is directed to chemists, astronomers and aeronomers as much as to physicists.

Manufactured spectrographs are in no way deficient, but are necessarily compromises, both in performance and cost, and are often intended for teaching or dedicated to a routine task such as sample analysis. A specially designed instrument has no difficulty in excelling them for a particular investigation, particularly in academic research fields where new areas are being explored and where no established technology yet exists.

It is to the basic optical design and construction of such individual instruments that this book is dedicated. I also take the opportunity of acknowledging my late good friends and colleagues, Dr H. J. J. Braddick, Rob Sternberg and Larry Mertz, from whom I learned so much.

Acknowledgements

Many individuals and institutions have contributed to the research funds and facilities which yielded the knowledge and experience written down here. Chief among these are the following:

The Royal Society Paul Instrument Fund for numerous development grants

Royal Society Research grants for field-work support

The Royal Society and Royal Astronomical Society Joint Permanent Eclipse Committee for expedition funds

The Japan Society for the Promotion of Science for field-work support

The British Council, in Spain and Japan, for travel grants for collaborative development and field-work support

The Science and Engineering Research Council, for development grants, expedition funds and field-work support

El Instituto Astrofisica de Andalucia, for collaboration, hospitality and facilities during field-work

The Royal Greenwich Observatory, Herstmonceux, for test facilities and the use of telescopes while testing prototype instruments

l'Observatoire de Haute Provence for observing facilities and the use of telescopes for observation

The University of Texas McDonald Observatory for technical facilities during field-work

The 'Atenisi Institute, Nuku'alofa, Tonga, for facilities and hospitality during field-work

xii

Acknowledgements

The University of Manchester Schuster Physical Laboratory workshop and drawing office staff for meticulous design detail and expert workmanship on many instruments

The University of Glasgow for an Honorary Research Fellowship while this book was being written