In recent years enormous changes have occurred in the field of optical spectrometry. The classical spectrometer has become obsolete and the spectrograph, in combination with the CCD detector, now offers a vastly superior approach. Although the basic optical principles remain unchanged the design considerations are very different, and in many cases more demanding. However, developments in computer ray-tracing and computer-aided design have coped with these extra impositions and have allowed the construction of a new generation of spectrographs.

The book covers the general principles of spectrographic design, and the practical and engineering aspects of a broad range of spectrographs and spectrometers. This allows the reader to make an informed choice of instrument. It will be of particular use when none of the immense array of manufactured spectrographic and spectrometric instruments is suitable for a specialised task. The book deals with materials and methods of construction and includes suggestions for the choice of optical table, the design of slit mechanisms, and adjustable mirror, grating and lens mounts, with suggestions for the alignment and calibration of the finished instrument.

Spectrograph Design Fundamentals describes the design and construction of optical spectrographs. It will be a valuable resource for academic researchers, graduate students and professionals in the fields of optics, spectroscopy and optical engineering.

John James is an Honorary Senior Research Fellow at the University of Glasgow and a Fellow of the Royal Astronomical Society. He is the author of Student’s Guide to Fourier Transforms, also published by Cambridge University Press, now in its second edition.
Contents

Preface
ix

Acknowledgements
xi

1 A brief history of spectroscopy
1

2 The relevant regions of the electromagnetic spectrum
6
2.1 The limits of optical spectrography
8

3 Geometrical optics
10
3.1 Rays and wavefronts
10
3.2 Instrumental optics
11
3.3 Centred systems
12
3.4 Gaussian optics
12
3.5 Optical layout
20
3.6 Apertures, stops, fields, irises and pupils
20
3.7 Ray bundles
20
3.8 The Helmholtz–Lagrange invariants
23
3.9 Surface brightness
25
3.10 Black body radiation
25

4 Optical aberrations
28
4.1 The Seidel aberrations
29
4.2 Zero-order aberration
29
4.3 First-order aberrations
29
4.4 Theorems
35
4.5 Aberration coefficients for mirrors
37
4.6 The achromatic doublet
39

5 Fourier transforms: a brief revision
41
5.1 Fourier transforms
41
5.2 Theorems
42
5.3 Convolutions
42
5.4 The Wiener–Khinchine theorem
45
5.5 Useful functions 45
5.6 More theorems 49
5.7 Aliasing 51

6 Physical optics and diffraction 52
6.1 Fraunhofer diffraction 52
6.2 Two-dimensional apertures and oblique incidence 55

7 The prism spectrograph 57
7.1 Introduction 57
7.2 The traditional prism spectrograph 57
7.3 The focal curve theorem 59
7.4 The Littrow mounting 59
7.5 The Pellin–Broca prism 60
7.6 Focal isolation 61

8 The plane grating spectrograph 63
8.1 The shape of a monochromatic line spectrum 63
8.2 Blazing of gratings 67
8.3 Apodising 68
8.4 Order overlap and free spectral range 69
8.5 Grating ghosts and periodic errors 70
8.6 The complete grating equation 72
8.7 Differential dispersion 76
8.8 Mounting configurations 76

9 The concave grating spectrograph 89
9.1 The Rowland grating 89
9.2 The concave grating as a spectrograph 92
9.3 The concave grating as a monochromator 96
9.4 The aberrations of the Rowland grating 97
9.5 Practical details of design 98

10 The interference spectrograph 101
10.1 The phase angle 101
10.2 The Fabry–Perot étalon spectrograph 102
10.3 Fabry–Perot theory 102
10.4 The Fabry–Perot monochromator 104
10.5 The Fabry–Perot CCD spectrograph 108
10.6 Fore-optics 110
10.7 Reference fringes 111
10.8 Extraction of the spectrum 111
10.9 Choice of the resolution and gap 112
10.10 The ‘crossed’ Fabry–Perot spectrograph 113
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 The multiplex spectrometer</td>
<td>114</td>
</tr>
<tr>
<td>11.1 The principles of Fourier spectrometry</td>
<td>114</td>
</tr>
<tr>
<td>11.2 The multiplex advantage</td>
<td>117</td>
</tr>
<tr>
<td>12 Detectors</td>
<td>120</td>
</tr>
<tr>
<td>12.1 Silver halide photography</td>
<td>121</td>
</tr>
<tr>
<td>12.2 Elementary electronic detectors</td>
<td>122</td>
</tr>
<tr>
<td>12.3 Detectors with spatial resolution</td>
<td>123</td>
</tr>
<tr>
<td>12.4 Exposure limitations</td>
<td>124</td>
</tr>
<tr>
<td>12.5 CCD software</td>
<td>125</td>
</tr>
<tr>
<td>12.6 CCD calibration</td>
<td>126</td>
</tr>
<tr>
<td>12.7 Spectrograph calibration</td>
<td>126</td>
</tr>
<tr>
<td>13 Auxiliary optics</td>
<td>128</td>
</tr>
<tr>
<td>13.1 Fore-optics</td>
<td>128</td>
</tr>
<tr>
<td>13.2 The astronomical telescope as fore-optics</td>
<td>130</td>
</tr>
<tr>
<td>13.3 Focal reducers</td>
<td>132</td>
</tr>
<tr>
<td>13.4 Schmidt-camera spectrography</td>
<td>134</td>
</tr>
<tr>
<td>13.5 Scattered light and baffling</td>
<td>134</td>
</tr>
<tr>
<td>13.6 Absorption cells</td>
<td>136</td>
</tr>
<tr>
<td>13.7 Fibre optical input</td>
<td>137</td>
</tr>
<tr>
<td>14 Optical design</td>
<td>139</td>
</tr>
<tr>
<td>14.1 First steps</td>
<td>139</td>
</tr>
<tr>
<td>14.2 Initial layout</td>
<td>139</td>
</tr>
<tr>
<td>14.3 The drawing board</td>
<td>140</td>
</tr>
<tr>
<td>14.4 Computer ray tracing</td>
<td>140</td>
</tr>
<tr>
<td>14.5 Refinement of the optical design</td>
<td>141</td>
</tr>
<tr>
<td>14.6 Requirements of a ray-tracing program</td>
<td>144</td>
</tr>
<tr>
<td>15 Mechanical design and construction</td>
<td>150</td>
</tr>
<tr>
<td>15.1 The optical layout</td>
<td>150</td>
</tr>
<tr>
<td>15.2 Optical materials</td>
<td>162</td>
</tr>
<tr>
<td>15.3 Transparent optical materials</td>
<td>163</td>
</tr>
<tr>
<td>15.4 Reflectors</td>
<td>163</td>
</tr>
<tr>
<td>15.5 Metals for construction</td>
<td>165</td>
</tr>
<tr>
<td>15.6 Other materials</td>
<td>167</td>
</tr>
<tr>
<td>16 Calibration</td>
<td>168</td>
</tr>
<tr>
<td>16.1 Sensitivity calibration</td>
<td>168</td>
</tr>
<tr>
<td>16.2 Wavelength calibration</td>
<td>169</td>
</tr>
<tr>
<td>16.3 Small spectral shifts and radial-velocity measurement</td>
<td>170</td>
</tr>
<tr>
<td>16.4 Absorption measurements</td>
<td>170</td>
</tr>
<tr>
<td>Contents</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>17 The alignment of a spectrograph</td>
<td>172</td>
</tr>
<tr>
<td>17.1 The optical alignment</td>
<td>172</td>
</tr>
<tr>
<td>17.2 The focus</td>
<td>173</td>
</tr>
<tr>
<td>Appendix 1 Optical aberrations</td>
<td>175</td>
</tr>
<tr>
<td>Appendix 2 Wavelengths of spectral lines for calibration</td>
<td>179</td>
</tr>
<tr>
<td>Appendix 3 The evolution of a Fabry–Perot interference spectrograph</td>
<td>183</td>
</tr>
<tr>
<td>Appendix 4 The common calibration curve in silver halide spectrophotometry</td>
<td>186</td>
</tr>
<tr>
<td>Bibliography</td>
<td>187</td>
</tr>
<tr>
<td>Index</td>
<td>188</td>
</tr>
</tbody>
</table>
Preface

Thirty-eight years ago, together with my colleague the late Robert Sternberg, I wrote a book entitled The Design of Optical Spectrometers. It described the state of the art as it was at that time after the great advances which had come in the previous ten years, and it was intended for people who wished to build a spectrometer tailored to a specific purpose, where perhaps one of the commercial designs was inadequate, unsuitable, unnecessarily cumbersome, or expensive.

When at last the time came to consider a new edition it became clear that the technology had changed so much that the classical optical spectrometer, in the sense of monochromator, was more or less obsolete and that later developments such as the desktop computer and the charge-coupled device had restored the spectrograph to its former eminence. The restoration in no way annulled the optical improvements of the previous 30 years but new constraints posed new problems in design. These problems are now solved and the solutions are presented here.

The fundamentals of optical design have not changed, but the constraints are now all different, and such properties as flat fields are needed where before they could be largely ignored; and focal ratios matter again when previously we could design everything so that such trivia as spherical aberration and coma could be neglected.

There is, as always, a gap to be bridged between the elegant theory presented in the undergraduate textbooks and the practical spectroscopic instrument standing on the laboratory bench or bolted to the Cassegrain focus of an astronomical telescope. The gap is partly in the limitations imposed by the curse of non-linearity in geometrical optics and the contumacious aberrations it produces, and partly in the sometimes obstinate physical properties of the materials of construction. As always in scientific instrument making, the art is in knowing what must be precise and exact and what can be left go hang at a crude level. There are tricks in this trade just as in any other. The traditional engineer’s description of a physicist is ‘someone who designs a box that must be screwed together from the inside’. (There is a parallel physicist’s definition of an engineer: someone who, when asked ‘what
Preface

is three times four?’ will get out a slide rule and answer ‘about twelve’.) There is an element of truth in this and some of the hints in these pages may help to refute the calumny.

This work is thus intended for the new generation of researchers who desire high efficiency in an instrument tailored to their own particular purpose, and who have access to a mechanical workshop of moderate size where an instrument of their design can be constructed. There has been no attempt to venture into the new fields of optical resonant scattering spectroscopy, tunable laser spectroscopy or other specialised techniques and so the book is directed to chemists, astronomers and aeronomers as much as to physicists.

Manufactured spectrographs are in no way deficient, but are necessarily compromises, both in performance and cost, and are often intended for teaching or dedicated to a routine task such as sample analysis. A specially designed instrument has no difficulty in excelling them for a particular investigation, particularly in academic research fields where new areas are being explored and where no established technology yet exists.

It is to the basic optical design and construction of such individual instruments that this book is dedicated. I also take the opportunity of acknowledging my late good friends and colleagues, Dr H. J. J. Braddock, Rob Sternberg and Larry Mertz, from whom I learned so much.
Acknowledgements

Many individuals and institutions have contributed to the research funds and facilities which yielded the knowledge and experience written down here. Chief among these are the following:

The Royal Society Paul Instrument Fund for numerous development grants
Royal Society Research grants for field-work support
The Royal Society and Royal Astronomical Society Joint Permanent Eclipse Committee for expedition funds
The Japan Society for the Promotion of Science for field-work support
The British Council, in Spain and Japan, for travel grants for collaborative development and field-work support
The Science and Engineering Research Council, for development grants, expedition funds and field-work support
El Instituto Astrofísica de Andalucia, for collaboration, hospitality and facilities during field-work
The Royal Greenwich Observatory, Herstmonceux, for test facilities and the use of telescopes while testing prototype instruments
l’Observatoire de Haute Provence for observing facilities and the use of telescopes for observation
The University of Texas McDonald Observatory for technical facilities during field-work
The `Atenisi Institute, Nuku’alofa, Tonga, for facilities and hospitality during field-work
Acknowledgements

The University of Manchester Schuster Physical Laboratory workshop and drawing office staff for meticulous design detail and expert workmanship on many instruments

The University of Glasgow for an Honorary Research Fellowship while this book was being written