
1 Numbers

In this book we study the properties of real functions defined on intervals of the

real line (possibly the whole real line) and whose image also lies on the real

line. In other words, they map R into R . Our work will be from a very precise

point of view in order to establish many of the properties of such functions

which seem intuitively obvious; in the process we will discover that some

apparently true properties are in fact not necessarily true!

The types of functions that we shall examine include:

exponential functions, such as x 7! ax;where a; x 2 R ;

trigonometric functions, such as x 7! sin x;where x 2 R ;

root functions, such as x 7! ffiffiffi
x

p
;where x � 0:

The types of behaviour that we shall examine include continuity, differ-

entiability and integrability – and we shall discover that functions with these

properties can be used in a number of surprising applications.

However, to put our study of such functions on a secure foundation, we need

first to clarify our ideas of the real numbers themselves and their properties. In

particular, we need to devote some time to the manipulation of inequalities,

which play a key role throughout the book.

In Section 1.1, we start by revising the properties of rational numbers and

their decimal representation. Then we introduce the real numbers as infinite

decimals, and describe the difficulties involved in doing arithmetic with such

decimals.

In Section 1.2, we revise the rules for manipulating inequalities and show

how to find the solution set of an inequality involving a real number, x, by

applying the rules. We also explain how to deal with inequalities which involve

modulus signs.

In Section 1.3, we describe various techniques for proving inequalities,

including the very important technique of Mathematical Induction.

The concept of a least upper bound, which is of great importance in

Analysis, is introduced in Section 1.4, and we discuss the Least Upper

Bound Property of R .

Finally, in Section 1.5, we describe how least upper bounds can be used to

define arithmetical operations in R .

Even though you may be familiar with much of this material we recommend

that you read through it, as we give the system of real numbers a more careful

treatment than you may have met before. The material on inequalities and least

upper bounds is particularly important for later on.

In later chapters we shall define exactly what the numbers p and e are, and

find various ways of calculating them. But, first, we examine numbers in

general.

For example, what exactly is
the number

ffiffiffi
2

p
?

You may omit this section
at a first reading.
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1.1 Real numbers

We start our study of the real numbers with the rational numbers, and investi-

gate their decimal representations, then we proceed to the irrational numbers.

1.1.1 Rational numbers

We assume that you are familiar with the set of natural numbers

N ¼ f1; 2; 3; . . .g;
and with the set of integers

Z ¼ f. . .; �2; �1; 0; 1; 2; 3; . . .g:
The set of rational numbers consists of all fractions (or ratios of integers)

Q ¼ p

q
: p 2 Z; q 2 N

� �
:

Remember that each rational number has many different representations as a

ratio of integers; for example

1

3
¼ 2

6
¼ 10

30
¼ . . .:

We also assume that you are familiar with the usual arithmetical operations of

addition, subtraction, multiplication and division of rational numbers.

It is often convenient to represent rational numbers geometrically as points

on a number line. We begin by drawing a line and marking on it points

corresponding to the integers 0 and 1. If the distance between 0 and 1 is

taken as a unit of length, then the rationals can be arranged on the line with

positive rationals to the right of 0 and negative rationals to the left.

–3 –2 –1 0 1 2 33
2

1
2

5
2

–

negative positive

For example, the rational 3
2

is placed at the point which is one-half of the way

from 0 to 3.

This means that rationals have a natural order on the number-line. For

example, 19
22

lies to the left of 7
8

because

19

22
¼ 76

88
and

7

8
¼ 77

88
:

If a lies to the left of b on the number-line, then

a is less than b or b is greater than a;

and we write

a < b or b > a:

For example

19

22
<

7

8
or

7

8
>

19

22
:

We write a� b, or b� a, if either a< b or a¼ b.

Note that 0 is not a natural
number.
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Problem 1 Arrange the following rational numbers in order:

0; 1;�1; 17
20
;�17

20
; 45

53
;�45

53
:

Problem 2 Show that between any two distinct rational numbers there

is another rational number.

1.1.2 Decimal representation of rational numbers

The decimal system enables us to represent all the natural numbers using only

the ten integers

0; 1; 2; 3; 4; 5; 6; 7; 8 and 9;

which are called digits. We now remind you of the basic facts about the

representation of rational numbers by decimals.

Definition A decimal is an expression of the form

�a0 � a1a2a3 . . .;

where a0 is a non-negative integer and a1, a2, a3, . . . are digits.

If only a finite number of the digits a1, a2, a3, . . . are non-zero, then the

decimal is called terminating or finite, and we usually omit the tail of 0s.

Terminating decimals are used to represent rational numbers in the follow-

ing way

�a0 � a1a2a3 . . . an ¼ � a0 þ a1

101
þ a2

102
þ � � � þ an

10n

� �
:

It can be shown that any fraction whose denominator contains only powers

of 2 and/or 5 (such as 20¼ 22� 5) can be represented by such a terminating

decimal, which can be found by long division.

However, if we apply long division to many other rationals, then the process

of long division never terminates and we obtain a non-terminating or infinite

decimal. For example, applying long division to 1
3

gives 0.333 . . ., and for 19
22

we obtain 0.86363 . . ..

Problem 3 Apply long division to 1
7

and 2
13

to find the corresponding

decimals.

These non-terminating decimals, which are obtained by applying the long

division process, have a certain common property. All of them are recurring;

that is, they have a recurring block of digits, and so can be written in shorthand

form, as follows:

0:333 . . . ¼ 0:3;

0:142857142857 . . . ¼ 0:142857 . . .;

0:86363 . . . ¼ 0:863:

It is not hard to show, whenever we apply the long division process to a

fraction p
q
, that the resulting decimal is recurring. To see why we notice that

there are only q possible remainders at each stage of the division, and so one

of these remainders must eventually recur. If the remainder 0 occurs, then the

resulting decimal is, of course, terminating; that is, it ends in recurring 0s.

For example

0:8500 . . .;

13:1212 . . .;

�1:111 . . .:

For example,

0:8500 . . . ¼ 0:85:

For example

0:85 ¼ 0 þ 8

101
þ 5

102

¼ 85

100
¼ 17

20
:

Another commonly used
notation is

0:3
:

or 0:1
:

42857
:

:

1.1 Real numbers 3
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Non-terminating recurring decimals which arise from the long division of

fractions are used to represent the corresponding rational numbers. This

representation is not quite so straight-forward as for terminating decimals,

however. For example, the statement

1

3
¼ 0:3 ¼ 3

101
þ 3

102
þ 3

103
þ � � �

can be made precise only when we have introduced the idea of the sum of a

convergent infinite series. For the moment, when we write the statement 1
3
¼ 0:3

we mean simply that the decimal 0:3 arises from 1
3

by the long division process.

The following example illustrates one way of finding the rational number

with a given decimal representation.

Example 1 Find the rational number (expressed as a fraction) whose decimal

representation is 0:863:

Solution First we find the fraction x such that x ¼ 0:63:
If we multiply both sides of this equation by 102 (because the recurring block

has length 2), then we obtain

100x ¼ 63:63 ¼ 63 þ x:

Hence

99x ¼ 63 ) x ¼ 63

99
¼ 7

11
:

Thus

0:863 ¼ 8

10
þ x

10
¼ 8

10
þ 7

110
¼ 95

110
¼ 19

22
: &

The key idea in the above solution is that multiplication of a decimal by 10k

moves the decimal point k places to the right.

Problem 4 Using the above method, find the fractions whose decimal

representations are:

(a) 0:231; (b) 2:281.

The decimal representation of rational numbers has the advantage that it

enables us to decide immediately which of two distinct positive rational numbers

is the greater. We need only examine their decimal representations and notice

the first place at which the digits differ. For example, to order 7
8

and 19
22

we write

7

8
¼ 0:875 . . . and

19

22
¼ 0:86363 . . .;

and so

0:86
#
363 . . . < 0:87

#
5) 19

22
<

7

8
:

Problem 5 Find the first two digits after the decimal point in the deci-

mal representations of 17
20

and 45
53

, and hence determine which of these

two rational numbers is the greater.

Warning Decimals which end in recurring 9s sometimes arise as alternative

representations for terminating decimals. For example

1 ¼ 0:9 ¼ 0:999 . . . and 1:35 ¼ 1:349 ¼ 1:34999 . . .:

We return to this topic in
Chapter 3.

Whenever possible, we avoid
using the form of a decimal
which ends in recurring 9s.
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You may find this rather alarming, but it is important to realise that this is

a matter of convention. We wish to allow the decimal 0.999 . . . to represent

a number x, so x must be less than or equal to 1 and greater than each of the

numbers

0:9; 0:99; 0:999; . . .:

The only rational with these properties is 1.

1.1.3 Irrational numbers

One of the surprising mathematical discoveries made by the Ancient Greeks

was that the system of rational numbers is not adequate to describe all the

magnitudes that occur in geometry. For example, consider the diagonal of a

square of side 1. What is its length? If the length is x, then, by Pythagoras’

Theorem, x must satisfy the equation x2¼ 2. However, there is no rational

number which satisfies this equation.

Theorem 1 There is no rational number x such that x2¼ 2.

Proof Suppose that such a rational number x exists. Then we can write x¼ p
q
.

By cancelling, if necessary, we may assume that p and q have no common

factor. The equation x2¼ 2 now becomes

p2

q2
¼ 2; so p2 ¼ 2q2:

Now, the square of an odd number is odd, and so p cannot be odd. Hence p is

even, and so we can write p¼ 2r, say. Our equation now becomes

ð2rÞ2 ¼ 2q2; so q2 ¼ 2r2:

Reasoning as before, we find that q is also even.

Since p and q are both even, they have a common factor 2, which contradicts

our earlier statement that p and q have no common factors.

Arguing from our original assumption that x exists, we have obtained two

contradictory statements. Thus, our original assumption must be false. In other

words, no such x exists. &

Problem 6 By imitating the above proof, show that there is no rational

number x such that x3¼ 2.

Since we want equations such as x2¼ 2 and x3¼ 2 to have solutions, we

must introduce new numbers which are not rational numbers. We denote these

new numbers by
ffiffiffi
2

p
and

ffiffiffi
23

p
, respectively; thus

ffiffiffi
2

p� �2¼ 2 and
ffiffiffi
23

p� �3¼ 2. Of

course, we must introduce many other new numbers, such as
ffiffiffi
3

p
,

ffiffiffiffiffi
115

p
, and

so on. Indeed, it can be shown that, if m, n are natural numbers and xm¼ n has

no integer solution, then
ffiffiffi
nm

p
cannot be rational. A number which is not rational

is called irrational.

There are many other mathematical quantities which cannot be described

exactly by rational numbers. For example, the number pwhich denotes the area

of a disc of radius 1 (or half the length of the perimeter of such a disc) is

irrational, as is the number e.

x

1

1

x2 ¼ 12 þ 12 ¼ 2

This is a proof by
contradiction.

For

ð2k þ 1Þ2 ¼ 4k2 þ 4k þ 1

¼ 4ðk2 þ kÞ þ 1:

The case m¼ 2 is treated in
Exercise 5 for this section
in Section 1.6.

Lambert proved that p is
irrational in 1770.
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It is natural to ask whether irrational numbers, such as
ffiffiffi
2

p
and p, can

be represented as decimals. Using your calculator, you can check that

(1.41421356)2 is very close to 2, and so 1.41421356 is a very good appro-

ximate value for
ffiffiffi
2

p
. But is there a decimal which represents

ffiffiffi
2

p
exactly? If

such a decimal exists, then it cannot be recurring, because all the recurring

decimals correspond to rational numbers.

In fact, it is possible to represent all the irrational numbers mentioned so

far by non-recurring decimals. For example, there are non-recurring decimals

such that ffiffiffi
2

p
¼ 1:41421356 . . . and p ¼ 3:14159265 . . .:

It is also natural to ask whether non-recurring decimals, such as

0:101001000100001 . . . and 0:123456789101112 . . .;

represent irrational numbers. In fact, a decimal corresponds to a rational

number if and only if it is recurring; so a non-recurring decimal must corres-

pond to an irrational number.

We may summarise this as:

recurring decimal , rational number

non-recurring decimal , irrational number

1.1.4 The real number system

Taken together, the rational numbers (recurring decimals) and irrational num-

bers (non-recurring decimals) form the set of real numbers, denoted by R .

As with rational numbers, we can determine which of two real numbers is

greater by comparing their decimals and noticing the first pair of correspond-

ing digits which differ. For example

0:10
#
100100010000 . . . < 0:12

#
3456789101112 . . .:

We now associate with each irrational number a point on the number-line.

For example, the irrational number x¼ 0.123456789101112 . . . satisfies each

of the inequalities

0:1 < x < 0:2

0:12 < x < 0:13

0:123 < x < 0:124

..

.

We assume that there is a point on the number-line corresponding to x,

which lies to the right of each of the (rational) numbers 0.1, 0.12, 0.123 . . ., and

to the left of each of the (rational) numbers 0.2, 0.13, 0.124, . . ..

As usual, negative real numbers correspond to points lying to the left of 0;

and the ‘number-line’, complete with both rational and irrational points, is

called the real line.

In fact

ð1:41421356Þ2

¼1:9999999932878736:

We prove that
ffiffiffi
2

p
has a

decimal representation in
Section 1.5.

When comparing decimals in
this way, we do not allow
either decimal to end in
recurring 9s.
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There is thus a one–one correspondence between the points on the real line

and the set R of real numbers (or decimals).

We now state several properties of R , with which you will be already

familiar, although you may not have met their names before. These properties

are used frequently in Analysis, and we do not always refer to them explicitly

by name.

Order Properties of R

1. Trichotomy Property If a, b2R , then exactly one of the following

inequalities holds

a < b or a ¼ b or a > b:

2. Transitive Property If a, b, c2R , then

a < b and b < c ) a < c:

3. Archimedean Property If a2R , then there is a positive integer n

such that

n > a:

4. Density Property If a, b2R and a< b, then there is a rational number

x and an irrational number y such that

a < x < b and a < y < b:

Remark

The Archimedean Property is sometimes expressed in the following equiva-

lent way: for any positive real number a, there is a positive integer n such

that 1
n
< a.

The following example illustrates how we can prove the Density Property.

Example 2 Find a rational number x and an irrational number y satisfying

a < x < b and a < y < b;

where a ¼ 0:123 and b ¼ 0:12345 . . ..

Solution The two decimals

a ¼ 0:1233
#
. . . and b ¼ 0:1234

#
5 . . .

differ first at the fourth digit. If we truncate b after this digit, we obtain the

rational number x¼ 0.1234, which satisfies the requirement that a< x< b.

To find an irrational number y between a and b, we attach to x a (sufficiently

small) non-recurring tail such as 010010001 . . . to give y¼ 0.1234j010010001 . . ..
It is then clear that y is irrational (because its decimal is non-recurring) and that

a< y< b. &

Problem 7 Find a rational number x and an irrational number y such

that a< x< b and a< y< b, where a ¼ 0:3 and b ¼ 0:3401:

The first three of these
properties are almost self-
evident, but the Density
Property is not so obvious.

1.1 Real numbers 7
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Theorem 2 Density Property of R

If a, b2R and a< b, then there is a rational number x and an irrational

number y such that

a < x < b and a < y < b:

Proof For simplicity, we assume that a, b� 0. So, let a and b have decimal

representations

a ¼ a0 � a1a2a3 . . . and b ¼ b0 � b1b2b3 . . .;

where we arrange that a does not end in recurring 9s, whereas b does not

terminate (this latter can be arranged by replacing a terminating representation

by an equivalent representation that ends in recurring 9s).

Since a< b, there must be some integer n such that

a0 ¼ b0; a1 ¼ b1; . . .; an�1 ¼ bn�1; but an < bn:

Then x¼ a0 � a1a2a3 . . . an� 1bn is rational, and a< x< b as required.

Finally, since x< b, it follows that we can attach a sufficiently small non-

recurring tail to x to obtain an irrational number y for which a< y< b. &

Remark

One consequence of the Density Property is that between any two real numbers

there are infinitely many rational numbers and infinitely many irrational

numbers.

Problem 8 Prove that between any two real numbers a and b there are

at least two distinct rational numbers.

1.1.5 Arithmetic in R

We can do arithmetic with recurring decimals by first converting the decimals

to fractions. However, it is not obvious how to perform arithmetical operations

with non-recurring decimals.

Assuming that we can represent
ffiffiffi
2

p
and p by the non-recurring decimals

ffiffiffi
2

p
¼ 1:41421356 . . . and p ¼ 3:14159265 . . .;

can we also represent the sum
ffiffiffi
2

p þ p and the product
ffiffiffi
2

p � p as deci-

mals? Indeed, what do we mean by the operations of addition and multi-

plication when non-recurring decimals (irrationals) are involved, and do

these operations satisfy the same properties as addition and multiplication

of rationals?

It would take many pages to answer these questions fully. Therefore, we

shall assume that it is possible to define all the usual arithmetical operations

with decimals, and that they do satisfy the usual properties. For definiteness,

we now list these properties.

You may omit the following
proof on a first reading.

Here a0, b0 are non-negative
integers, and a1, b1, a2, b2, . . .
are digits.

A proof of the previous
remark would involve ideas
similar to those involved in
tackling Problem 8.

8 1: Numbers
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Arithmetic in R

Addition Multiplication

A1 If a, b 2 R , then

aþ b 2 R .

M1 If a, b 2 R , then

a� b2 R .

A2 If a 2 R , then

aþ 0¼ 0þ a¼ a.

M2 If a 2 R , then

a� 1¼ 1� a¼ a.

A3 If a 2 R , then there is a

number �a 2 R such that

aþ (�a)¼ (� a)þ a¼ 0.

M3 If a 2 R � {0}, then there is a

number a�1 2 R such that

a� a�1¼ a�1� a¼ 1.

A4 If a, b, c 2 R , then

(aþ b)þ c¼ aþ (bþ c).

M4 If a, b, c 2 R , then

(a� b)� c¼ a� (b� c).

A5 If a, b 2 R , then

aþ b¼ bþ a.

M5 If a, b 2 R , then

a� b¼ b� a.

D If a, b, c 2 R , then a� (bþ c)¼ a� bþ a� c.

To summarise the contents of this table:

� R is an Abelian group under the operation of additionþ;

� R � {0} is an Abelian group under the operation of multiplication�;

� These two group structures are linked by the Distributive Property.

It follows from the above properties that we can perform addition, subtraction

(where a� b¼ aþ (�b)), multiplication and division (where a
b
¼ a� b�1) in

R , and that these operations satisfy all the usual properties.

Furthermore, we shall assume that the set R contains the nth roots and

rational powers of positive real numbers, with their usual properties. In

Section 1.5 we describe one way of justifying the existence of nth roots.

1.2 Inequalities

Much of Analysis is concerned with inequalities of various kinds; the aim of

this section and the next section is to provide practice in the manipulation of

inequalities.

1.2.1 Rearranging inequalities

The fundamental rule, upon which much manipulation of inequalities is based,

is that the statement a < b means exactly the same as the statement b� a> 0.

This fact can be stated concisely in the following way:

Rule 1 For any a, b2R , a< b , b� a> 0.

Put another way, the inequalities a< b and b� a> 0 are equivalent.

There are several other standard rules for rearranging a given inequality into

an equivalent form. Each of these can be deduced from our first rule above. For

CLOSURE

IDENTITY

INVERSES

ASSOCIATIVITY

COMMUTATIVITY

DISTRIBUTATIVITY

Properties A1–A5

Properties M1–M5

Property D

Any system satisfying the
properties listed in the table is
called a field. Both Q and R
are fields.

Recall that the symbol ‘,’
means ‘if and only if’ or
‘implies and is implied by’.
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example, we obtain an equivalent inequality by adding the same expression to

both sides.

Rule 2 For any a, b, c2R , a< b , aþ c< bþ c.

Another way to rearrange an inequality is to multiply both sides by a non-zero

expression, making sure to reverse the inequality if the expression is

negative.

Rule 3

� For any a, b2R and any c > 0, a < b , ac < bc;

� For any a, b2R and any c < 0, a < b , ac > bc.

Sometimes the most effective way to rearrange an inequality is to take reci-

procals. However, in this case, both sides of the inequality should be positive,

and the direction of the inequality has to be reversed.

Rule 4 (Reciprocal Rule)

For any positive a, b2R , a5b , 1
a
> 1

b
:

Some inequalities can be simplified only by taking powers. However, in order

to do this, both sides must be non-negative and must be raised to a positive

power.

Rule 5 (Power Rule)

For any non-negative a, b2R , and any p > 0, a < b , ap < bp.

For positive integers p, Rule 5 follows from the identity

bp� ap ¼ b� að Þ bp�1 þ bp�2aþ � � � þ bap�2 þ ap�1
� �

;

thus, since the right-hand bracket is positive, we have

b� a > 0 , bp � ap > 0;

which is equivalent to our desired result.

Remark

There are corresponding versions of Rules 1–5 in which the strict inequality

a < b is replaced by the weak inequality a � b.

Problem 1 State (without proof) the versions of Rules 1–5 for weak

inequalities.

We shal l give one more rule for rearra nging inequal ities in Sub-se ction 1.2.3.

1.2.2 Solving inequalities

Solving an inequality involving an unknown real number x means determin-

ing those values of x for which the given inequality holds; that is, finding

the solution set of the inequality. We can often do this by rewriting the

inequality in an equivalent, but simpler form, using the rules given in the

last sub-section.

For example

253 , 20530 ðc ¼ 10Þ;
253 , �20 > �30

ðc ¼ �10Þ:

For example

2 < 4 , 1

2
ð¼0:5Þ

>
1

4
¼0:25ð Þ:

For example

4 < 9 , 4
1
2ð¼2Þ

< 9
1
2ð¼3Þ:

We shall discuss the meaning
of non-integer powers in
Section 1.5.

For example,

b3� a3 ¼ b� að Þ�
b2 þ baþ a2
� �

:

The solution set is the set of
those values of x for which the
inequality holds.
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