## **Polymer Physics**

The field of polymer science has advanced and expanded considerably in recent years, encompassing broader ranges of materials and applications. In this book, the author unifies the subject matter, pulling together research to provide an updated and systematic presentation of polymer association and thermoreversible gelation, one of the most rapidly developing areas in polymer science. Starting with a clear presentation of the fundamental laws of polymer physics, subsequent chapters discuss a new theoretical model that combines thermodynamic and rheological theory. Recent developments in polymer physics are explored, along with important case studies on topics such as self-assembly, supramolecules, thermoreversible gels, and water-soluble polymers. Throughout the book, a balance is maintained between theoretical descriptions and practical applications, helping the reader to understand complex physical phenomena and their relevance in industry. This book has wide interdisciplinary appeal and is aimed at students and researchers in physics, chemistry, and materials science.

**Fumihiko Tanaka** is Professor in the Department of Polymer Chemistry at the Graduate School of Engineering, Kyoto University. Professor Tanaka has published extensively and his current research interests are in theoretical aspects of phase transitions in polymeric systems, polymer association, and thermoreversible gelation.

## **Polymer Physics**

Applications to Molecular Association and Thermoreversible Gelation

FUMIHIKO TANAKA Kyoto University, Japan



CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521864299

© Fumihiko Tanaka 2011

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2011

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Tanaka, F. (Fumihiko), 1947–
Polymer Physics: Applications to Molecular Association and Thermoreversible Gelation / Fumihiko Tanaka.
p. cm.
Includes bibliographical references and index
ISBN 978-0-521-86429-9 (Hardback)
1. Polymers. 2. Gelation. 3. Polymer colloids. I. Title.
QC173.4.P65T36 2011
547'.7–dc22 2010051430

ISBN 978-0-521-86429-9 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> Dedicated to the memory of Professor Walter H. Stockmayer and to Sir Sam Edwards

Miracle of polymer science

1

2

| Cambridge University Press                                                                               |
|----------------------------------------------------------------------------------------------------------|
| 978-0-521-86429-9 - Polymer Physics: Applications to Molecular Association and Thermoreversible Gelation |
| Fumihiko Tanaka                                                                                          |
| Frontmatter                                                                                              |
| <u>More information</u>                                                                                  |

## Contents

| Prefe | ace                                          | pag                                                               | ge xiii |
|-------|----------------------------------------------|-------------------------------------------------------------------|---------|
| Stati | stical pro                                   | perties of polymer chains                                         | 1       |
| 1.1   | Conformation of polymers                     |                                                                   |         |
|       | 1.1.1                                        | Internal coordinates of a polymer chain and its hindered rotation | 1       |
|       | 1.1.2                                        | Coarse-grained models of polymer chains                           | 3       |
| 1.2   | The ide                                      | eal chain                                                         | 5       |
|       | 1.2.1                                        | Single-chain partition function                                   | 5       |
|       | 1.2.2                                        | Tension–elongation curve                                          | 8       |
|       | 1.2.3                                        | Distribution of the end-to-end vector                             | 10      |
| 1.3   | Fundar                                       | mental properties of a Gaussian chain                             | 11      |
| 1.4   | Effect of internal rotation and stiff chains |                                                                   |         |
|       | 1.4.1                                        | Characteristic ratio                                              | 13      |
|       | 1.4.2                                        | Persistence length and the stiff chain                            | 15      |
| 1.5   | Exclud                                       | led-volume effect                                                 | 16      |
| 1.6   | Scaling                                      | g laws and the temperature blob model                             | 19      |
| 1.7   | Coil–g                                       | lobule transition of a polymer chain in a poor solvent            | 21      |
| 1.8   | Coil-h                                       | elix transition                                                   | 23      |
| 1.8   | Hydration of polymer chains                  |                                                                   |         |
|       | 1.9.1                                        | Statistical models of hydrated polymer chains                     | 33      |
|       | 1.9.2                                        | Models of the globules and hydrated coils                         | 38      |
|       | 1.9.3                                        | Competitive hydrogen bonds in mixed solvents                      | 39      |
| Refe  | rences                                       |                                                                   | 44      |
| Polyr | ner soluti                                   | ons                                                               | 46      |
| 2.1   | Therm                                        | odynamics of phase equilibria                                     | 46      |
|       | 2.1.1                                        | Gibbs' phase rule and phase diagrams                              | 46      |
|       | 2.1.2                                        | Stability of a phase                                              | 48      |
|       | 2.1.3                                        | Liquid-liquid separation by a semipermeable membrane              | 52      |
|       | 2.1.4                                        | Spontaneous liquid-liquid phase separation                        | 55      |
| 2.2   | Charac                                       | eteristic properties of polymer solutions                         | 57      |
|       | 2.2.1                                        | Vapor pressure and osmotic pressure                               | 58      |
|       |                                              |                                                                   |         |

| viii       | Contents                                |             |                                                               |          |  |
|------------|-----------------------------------------|-------------|---------------------------------------------------------------|----------|--|
|            |                                         |             |                                                               |          |  |
|            |                                         | 2.2.2       | Viscosity                                                     | 6        |  |
|            |                                         | 2.2.3       | Diffusion of a polymer chain                                  | 6        |  |
|            | 2.3                                     | Lattice     | theory of polymer solutions                                   | 6        |  |
|            |                                         | 2.3.1       | The free energy of mixing                                     | 6        |  |
|            |                                         | 2.3.2       | Properties of polymer solutions predicted by Flory-Huggins    |          |  |
|            |                                         |             | lattice theory                                                | 7        |  |
|            |                                         | 2.3.3       | Extension to many-component polymer solutions and blends      | 7        |  |
|            |                                         | 2.3.4       | Refinement beyond the simple mean field approximation         | 8        |  |
|            | 2.4                                     | -           | laws of polymer solutions                                     | 8        |  |
|            |                                         | 2.4.1       | Overlap concentration                                         | 8        |  |
|            |                                         | 2.4.2       | Correlation length                                            | 8        |  |
|            |                                         | 2.4.3       | Radius of gyration                                            | 9        |  |
|            |                                         | 2.4.4       | Osmotic pressure                                              | 9        |  |
|            |                                         | 2.4.5       | Phase equilibria (reduced equation of states)                 | 9        |  |
|            |                                         | 2.4.6       | Molecular motion                                              | 9        |  |
|            | Refe                                    | rences      |                                                               | 9        |  |
| 3          | Classical theory of gelation            |             |                                                               |          |  |
|            | 3.1                                     | What is     | a gel?                                                        | ç        |  |
|            |                                         | 3.1.1       | Definition of a gel                                           | 9        |  |
|            |                                         | 3.1.2       | Classification of gels                                        | 9        |  |
|            |                                         | 3.1.3       | Structure of gels and their characterization                  | 9        |  |
|            |                                         | 3.1.4       | Examples of gels                                              | 10       |  |
|            | 3.2                                     |             | al theory of gelation                                         | 10       |  |
|            |                                         | 3.2.1       | Random branching                                              | 10       |  |
|            |                                         | 3.2.2       | Polycondensation                                              | 10       |  |
|            |                                         | 3.2.3       | Polydisperse functional monomers                              | 11       |  |
|            |                                         | 3.2.4       | Cross-linking of prepolymers                                  | 11<br>11 |  |
|            | 3.3                                     | 5           |                                                               |          |  |
|            |                                         | 3.3.1       | Finding the gel point using the branching coefficient         | 11       |  |
|            |                                         | 3.3.2       | Molecular weight distribution function of the binary mixtures |          |  |
|            |                                         |             | $\mathbf{R}\{\mathbf{A}_f\}/\mathbf{R}\{\mathbf{B}_g\}$       | 11       |  |
|            |                                         | 3.3.3       | Polydisperse binary mixture $R{A_f}/R{B_g}$                   | 11       |  |
|            |                                         | 3.3.4       | Gels with multiple junctions                                  | 11       |  |
|            | 3.A                                     |             | ts of the Stockmayer distribution function                    | 12       |  |
|            | 3.B                                     |             | e theory of gelation                                          | 12       |  |
| References |                                         | rences      |                                                               | 12       |  |
| 4          | Elast                                   | icity of po | lymer networks                                                | 12       |  |
|            | 4.1 Thermodynamics of rubber elasticity |             |                                                               |          |  |
|            |                                         | 4.1.1       | Energetic elasticity and entropic elasticity                  | 12       |  |
|            |                                         | 4.1.2       | Thermoelastic inversion                                       | 13       |  |
|            |                                         | 4.1.3       | Gough–Joule effect                                            | 13       |  |

| <ul> <li>4.2.1 Local structure of cross-linked rubbers</li> <li>4.2.2 Affine network theory</li> <li>4.2.3 Elastically effective chains</li> <li>4.2.4 Simple description of thermoelastic inversion</li> <li>4.3 Phantom network theory</li> <li>4.3.1 Micronetworks of tree form</li> <li>4.3.2 Fluctuation theorem and the elastic free energy</li> <li>4.4 Swelling experiments</li> <li>4.5 Volume transition of gels</li> <li>4.5.1 Free swelling</li> <li>4.5.2 Swelling under uniaxial elongation</li> <li>4.6 Networks made up of nonlinear chains</li> <li>References</li> </ul> 5 Associating polymer solutions and thermoreversible gelation |       |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|
| <ul> <li>4.2.2 Affine network theory</li> <li>4.2.3 Elastically effective chains</li> <li>4.2.4 Simple description of thermoelastic inversion</li> <li>4.3 Phantom network theory</li> <li>4.3.1 Micronetworks of tree form</li> <li>4.3.2 Fluctuation theorem and the elastic free energy</li> <li>4.4 Swelling experiments</li> <li>4.5 Volume transition of gels</li> <li>4.5.1 Free swelling</li> <li>4.5.2 Swelling under uniaxial elongation</li> <li>4.6 Networks made up of nonlinear chains</li> <li>References</li> </ul> 5 Associating polymer solutions and thermoreversible gelation                                                        | 133   |  |  |  |
| <ul> <li>4.2.3 Elastically effective chains</li> <li>4.2.4 Simple description of thermoelastic inversion</li> <li>4.3 Phantom network theory</li> <li>4.3.1 Micronetworks of tree form</li> <li>4.3.2 Fluctuation theorem and the elastic free energy</li> <li>4.4 Swelling experiments</li> <li>4.5 Volume transition of gels</li> <li>4.5.1 Free swelling</li> <li>4.5.2 Swelling under uniaxial elongation</li> <li>4.6 Networks made up of nonlinear chains</li> <li>References</li> </ul> 5 Associating polymer solutions and thermoreversible gelation                                                                                             | 133   |  |  |  |
| <ul> <li>4.2.4 Simple description of thermoelastic inversion</li> <li>4.3 Phantom network theory</li> <li>4.3.1 Micronetworks of tree form</li> <li>4.3.2 Fluctuation theorem and the elastic free energy</li> <li>4.4 Swelling experiments</li> <li>4.5 Volume transition of gels</li> <li>4.5.1 Free swelling</li> <li>4.5.2 Swelling under uniaxial elongation</li> <li>4.6 Networks made up of nonlinear chains</li> <li>References</li> </ul> 5 Associating polymer solutions and thermoreversible gelation                                                                                                                                         | 134   |  |  |  |
| <ul> <li>4.3 Phantom network theory</li> <li>4.3.1 Micronetworks of tree form</li> <li>4.3.2 Fluctuation theorem and the elastic free energy</li> <li>4.4 Swelling experiments</li> <li>4.5 Volume transition of gels</li> <li>4.5.1 Free swelling</li> <li>4.5.2 Swelling under uniaxial elongation</li> <li>4.6 Networks made up of nonlinear chains</li> <li>References</li> </ul> 5 Associating polymer solutions and thermoreversible gelation                                                                                                                                                                                                      | 139   |  |  |  |
| <ul> <li>4.3.1 Micronetworks of tree form</li> <li>4.3.2 Fluctuation theorem and the elastic free energy</li> <li>4.4 Swelling experiments</li> <li>4.5 Volume transition of gels</li> <li>4.5.1 Free swelling</li> <li>4.5.2 Swelling under uniaxial elongation</li> <li>4.6 Networks made up of nonlinear chains</li> <li>References</li> </ul> 5 Associating polymer solutions and thermoreversible gelation                                                                                                                                                                                                                                          | 141   |  |  |  |
| <ul> <li>4.3.2 Fluctuation theorem and the elastic free energy</li> <li>4.4 Swelling experiments</li> <li>4.5 Volume transition of gels</li> <li>4.5.1 Free swelling</li> <li>4.5.2 Swelling under uniaxial elongation</li> <li>4.6 Networks made up of nonlinear chains</li> <li>References</li> </ul> 5 Associating polymer solutions and thermoreversible gelation                                                                                                                                                                                                                                                                                    | 142   |  |  |  |
| <ul> <li>4.4 Swelling experiments</li> <li>4.5 Volume transition of gels <ul> <li>4.5.1 Free swelling</li> <li>4.5.2 Swelling under uniaxial elongation</li> </ul> </li> <li>4.6 Networks made up of nonlinear chains <ul> <li>References</li> </ul> </li> <li>5 Associating polymer solutions and thermoreversible gelation</li> </ul>                                                                                                                                                                                                                                                                                                                  | 143   |  |  |  |
| <ul> <li>4.5 Volume transition of gels</li> <li>4.5.1 Free swelling</li> <li>4.5.2 Swelling under uniaxial elongation</li> <li>4.6 Networks made up of nonlinear chains</li> <li>References</li> </ul> 5 Associating polymer solutions and thermoreversible gelation                                                                                                                                                                                                                                                                                                                                                                                     | 145   |  |  |  |
| <ul> <li>4.5.1 Free swelling</li> <li>4.5.2 Swelling under uniaxial elongation</li> <li>4.6 Networks made up of nonlinear chains</li> <li>References</li> </ul> 5 Associating polymer solutions and thermoreversible gelation                                                                                                                                                                                                                                                                                                                                                                                                                            | 146   |  |  |  |
| <ul> <li>4.5.2 Swelling under uniaxial elongation</li> <li>4.6 Networks made up of nonlinear chains<br/>References</li> <li>5 Associating polymer solutions and thermoreversible gelation</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 150   |  |  |  |
| <ul> <li>4.6 Networks made up of nonlinear chains<br/>References</li> <li>5 Associating polymer solutions and thermoreversible gelation</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 153   |  |  |  |
| <ul> <li>5 Associating polymer solutions and thermoreversible gelation</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 154   |  |  |  |
| 5 Associating polymer solutions and thermoreversible gelation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 156   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 159   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 160   |  |  |  |
| 5.1 Historical survey of the study of associating solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 160   |  |  |  |
| 5.2 Statistical thermodynamics of associating polymers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 161   |  |  |  |
| 5.2.1 Pregel regime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 167   |  |  |  |
| 5.2.2 Sol–gel transition and postgel regime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 168   |  |  |  |
| 5.3 Renormalization of the interaction parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 168   |  |  |  |
| 5.4 Phase separation, stability limit, and other solution properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 169   |  |  |  |
| 5.5 Scattering function of associating polymer mixtures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 170   |  |  |  |
| 5.A Renormalization of the interaction parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 173   |  |  |  |
| 5.B Scattering function in RPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 175   |  |  |  |
| 5.C Spinodal condition in RPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 177   |  |  |  |
| References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |  |  |  |
| Nongelling associating polymers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |  |  |  |
| 6.1 Dimer formation as associated block-copolymers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 180   |  |  |  |
| 6.2 Linear association and ring formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 186   |  |  |  |
| 6.3 Side-chain association                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 189   |  |  |  |
| 6.4 Hydration in aqueous polymer solutions and closed-loop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |  |  |  |
| miscibility gaps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 197   |  |  |  |
| 6.5 Cooperative hydration in solutions of temperature-responsive polymer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s 200 |  |  |  |
| 6.6 Hydrogen-bonded liquid-crystalline supramolecules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 207   |  |  |  |
| 6.7 Polymeric micellization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 212   |  |  |  |
| References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 219   |  |  |  |
| 7 Thermoreversible gelation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 222   |  |  |  |
| 7.1 Models of thermoreversible gelation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 222   |  |  |  |
| 7.2 Application of the classical theory of gelation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |  |  |  |

| ambridge University Press                                                                               |    |
|---------------------------------------------------------------------------------------------------------|----|
| 78-0-521-86429-9 - Polymer Physics: Applications to Molecular Association and Thermoreversible Gelation | on |
| umihiko Tanaka                                                                                          |    |
| rontmatter                                                                                              |    |
| ore information                                                                                         |    |

| X | Conte                             | Contents |                                                            |     |  |
|---|-----------------------------------|----------|------------------------------------------------------------|-----|--|
|   |                                   |          |                                                            |     |  |
|   |                                   | 7.2.1    | Pregel regime                                              | 226 |  |
|   |                                   | 7.2.2    | The gel point                                              | 227 |  |
|   |                                   | 7.2.3    | Postgel regime                                             | 228 |  |
|   |                                   | 7.2.4    | Phase diagrams of thermoreversible gels                    | 232 |  |
|   | 7.3                               |          | odynamics of sol-gel transition as compared                |     |  |
|   |                                   |          | ose–Einstein condensation                                  | 233 |  |
|   | 7.4                               |          | preversible gels with multiple cross-linking               | 235 |  |
|   |                                   | 7.4.1    | Multiple association                                       | 235 |  |
|   |                                   | 7.4.2    | Distribution function of multiple trees                    | 237 |  |
|   |                                   | 7.4.3    | The average molecular weight and the condition for         |     |  |
|   |                                   |          | the gel point                                              | 240 |  |
|   |                                   | 7.4.4    | Solution properties of thermoreversible gels with multiple |     |  |
|   |                                   |          | junctions                                                  | 242 |  |
|   |                                   | 7.4.5    | Simple models of junction multiplicity                     | 243 |  |
|   | Refe                              | rences   |                                                            | 245 |  |
| 8 | Structure of polymer networks     |          |                                                            |     |  |
|   | 8.1                               | Local s  | structure of the networks-cross-linking regions            | 247 |  |
|   | 8.2                               | Global   | structure of the networks – elastically effective          |     |  |
|   |                                   | chains   | and elastic modulus                                        | 250 |  |
|   |                                   | 8.2.1    | Fundamental parameters of the network topology             | 250 |  |
|   |                                   | 8.2.2    | Structure parameters of multiplty cross-linked gels        | 252 |  |
|   |                                   | 8.2.3    | The number of elastically effective chains                 | 258 |  |
|   | 8.3                               | Percola  | ation model                                                | 262 |  |
|   |                                   | 8.3.1    | Percolation threshold                                      | 262 |  |
|   |                                   | 8.3.2    | Distribution function of clusters                          | 265 |  |
|   |                                   | 8.3.3    | Percolation in one dimension                               | 266 |  |
|   |                                   | 8.3.4    | Site percolation on the Bethe lattice                      | 268 |  |
|   | 8.4                               | Self-sii | milarity and scaling laws                                  | 269 |  |
|   |                                   | 8.4.1    | Static scaling laws                                        | 269 |  |
|   |                                   | 8.4.2    | Viscoelastic scaling laws                                  | 273 |  |
|   | 8.5                               | Percola  | ation in continuum media                                   | 276 |  |
|   |                                   | 8.5.1    | Critical volume fraction of percolation                    | 276 |  |
|   |                                   | 8.5.2    | Gelation of sticky hard spheres (Baxter's problem)         | 277 |  |
|   | Refe                              | rences   |                                                            | 279 |  |
| 9 | Rheology of thermoreversible gels |          |                                                            |     |  |
|   | 9.1                               | Networ   | rks with temporal junctions                                | 281 |  |
|   |                                   | 9.1.1    | Models of transient networks                               | 282 |  |
|   |                                   | 9.1.2    | Equilibrium solutions                                      | 286 |  |
|   |                                   | 9.1.3    | Stress-strain relation                                     | 289 |  |
|   |                                   | 9.1.4    | Integral form of the equation                              | 290 |  |
|   |                                   | 9.1.5    | Generalization of the model                                | 292 |  |

|    | Conte | Contents                                                                  |                   |  |  |
|----|-------|---------------------------------------------------------------------------|-------------------|--|--|
|    |       |                                                                           |                   |  |  |
|    | 9.2   | Linear response of transient networks                                     | 292               |  |  |
|    |       | 9.2.1 The Green–Tobolsky limit                                            | 295               |  |  |
|    |       | 9.2.2 Exponential dissociation rate                                       | 296               |  |  |
|    |       | 9.2.3 Power-law dissociation rate                                         | 297               |  |  |
|    |       | 9.2.4 Coupling to the tension                                             | 298               |  |  |
|    | 9.3   | Stationary flows                                                          | 299               |  |  |
|    |       | 9.3.1 GT limit and quadratic $\beta$                                      | 300               |  |  |
|    |       | 9.3.2 Coupling to the tension                                             | 302               |  |  |
|    |       | 9.3.3 Expansion in powers of the shear rate                               | 303               |  |  |
|    |       | 9.3.4 Elongational flows                                                  | 305               |  |  |
|    | 9.4   | Time-dependent flows                                                      | 309               |  |  |
|    |       | 9.4.1 Transient flows of Gaussian networks in the GT limit                | 309               |  |  |
|    |       | 9.4.2 Start-up shear flows with tension–dissociation couplin              | •                 |  |  |
|    |       | 9.4.3 Nonlinear stress relaxation                                         | 316               |  |  |
|    | 9.A   | Expansion in powers of the shear rate and time                            | 321               |  |  |
|    | 9.B   | Solvable model of the quadratic dissociation rate                         | 322               |  |  |
|    |       | 9.B.1 Start-up and stationary flows                                       | 323               |  |  |
|    |       | 9.B.2 Stress relaxation                                                   | 328               |  |  |
|    | Refer | rences                                                                    | 329               |  |  |
| 10 | Some  | ne important thermoreversible gels                                        |                   |  |  |
|    | 10.1  | Polymer-surfactant interaction                                            |                   |  |  |
|    |       | 10.1.1 Modification of the gel point by surfactants                       | 333               |  |  |
|    |       | 10.1.2 Surfactant binding isotherms                                       | 335               |  |  |
|    |       | 10.1.3 CMC of the surfactant molecules                                    | 336               |  |  |
|    |       | 10.1.4 High-frequency elastic modulus                                     | 338               |  |  |
|    | 10.2  | Loop-bridge transition                                                    | 339               |  |  |
|    | 10.3  | Competing hydration and gelation                                          | 345               |  |  |
|    |       | 10.3.1 Models of competitive hydration and gelation                       | 345               |  |  |
|    |       | 10.3.2 Degree of hydration and the gel point                              | 349               |  |  |
|    | 10.4  | Coexisting hydration and gelation                                         | 352               |  |  |
|    | 10.5  | Thermoreversible gelation driven by polymer conformational c              | hange 359         |  |  |
|    |       | 10.5.1 Models of conformational transition                                | 361               |  |  |
|    |       | 10.5.2 Theory of gelation with conformation change                        | 363               |  |  |
|    |       | 10.5.3 Simple models of excitation                                        | 367               |  |  |
|    |       | Thermoreversible gelation driven by the coil-helix                        |                   |  |  |
|    | 10.6  | Thermoreversible gelation driven by the coil–helix                        |                   |  |  |
|    | 10.6  | Thermoreversible gelation driven by the coil-helix transition of polymers | 370               |  |  |
|    | 10.6  |                                                                           |                   |  |  |
|    | 10.6  | transition of polymers                                                    | 370<br>372<br>374 |  |  |
|    | 10.6  | transition of polymers<br>10.6.1 Models of helix association              | 372               |  |  |

Index

383

## Preface

Polymer science has expanded over the past few decades and shifted its centre of interest to encompass a whole new range of materials and phenomena. Fundamental investigations on the molecular structure of polymeric liquids, gels, various phase transitions, alloys and blends, molecular motion, flow properties, and many other interesting topics, now constitute a significant proportion of the activity of physical and chemical laboratories around the world.

But beneath the luxuriance of macromolecular materials and observable phenomena, there can be found a common basis of concepts, hypotheses, models, and mathematical deductions that are supposed to belong to only few theories.

One of the major problems in polymer physics which remain unsolved is that of calculating the materials properties of self-assembled supramolecules, gels, molecular complexes, etc., in solutions of associating polymers from first principles, utilizing only such fundamental properties as molecular dimensions, their functionality, and intermolecular associative forces (hydrogen bonding, hydrophobic force, electrostatic interaction, etc.).

Theoretical studies of polymer association had not been entirely neglected, but their achievements were fragmentary, phenomenological, and lacked mathematical depth and rigor. What I have tried to do, therefore, is to show how certain physically relevant phenomena derive from the defining characteristics of various simple theoretical model systems.

The goal of this book is thus to present polymer physics as generally as possible, striving to maintain the appropriate balance between theoretical descriptions and their practical applications.

During the decade that has just ended the application of the method of lattice theory (by Flory and Huggins), the scaling theory (by de Gennes) of polymer solutions, and the theory of gelation reaction (by Flory and Stockmayer) has resulted in the development of what has become known as the "theory of associating polymer solutions." This has brought the aforementioned unsolved problem markedly nearer to the resolution.

In this book special reference is made to polymer associations of various types – binding of small molecules by polymers, polymer hydration, block-copolymerization, thermoreversible gelation, and their flow properties. These topics do not, by any means, exhaust the possibilities of the method. They serve, however, to illustrate its power. The author hopes that others will be stimulated by what has already been done to attempt further applications of the theory of associating polymer solutions.

xiv Preface

Most of the subject matter treated in the present book has been hitherto available only in the form of original papers in various scientific journals. These have been very diverse and fragmented. Consequently, they may have appeared difficult to those who start the research and practice on the subjects. The opportunity has therefore been taken to develop the theoretical bases from the unified view and to give the practical applications in somewhat greater detail.

The first four chapters, making up the fundamental part, contain reviews of the latest knowledge on polymer chain statistics, their reactions, their solution properties, and the elasticity of cross-linked networks. Each chapter starts from the elementary concepts and properties with a description of the theoretical methods required to study them. Then, they move to an organized description of the more advanced studies, such as coil–helix transition, hydration, the lattice theory of semiflexible polymers, entropy catastrophe, gelation with multiple reaction, cascade theory, the volume phase transition of gels, etc. Most of them are difficult to find in the presently available textbooks on polymer physics.

Next, Chapter 5 presents the equilibrium theory of associating polymer solutions, one of the major theoretical frameworks for the study of polymer association and thermoreversible gelation.

This is followed by three chapters on the application of the theory to nongelling and gelling solutions. Chapter 6 on nongelling associating solutions includes block polymerization by hydrogen bonding, hydration of water-soluble polymers, hydrogen-bonding liquid crystallization, and micellization by hydophobic aggregation. Chapter 7 treats more interesting but difficult gelling solutions, with stress on phase separation and thermoreversible gelation with junctions of variable multiplicity. Chapter 8 presents two major methods for the study of gels near the sol–gel transition point. One is the topological method on the basis of graph theory, and the other is scaling theory on the basis of the percolation picture.

Chapter 9 presents the transient network theory of associating polymer solutions, which is the other one of the two major theories treated in this book. It studies the dynamic and rheological flow properties of structured solutions from a molecular point of view. Thus, linear complex modulus, nonlinear stationary viscosity, start-up flows, and stress relaxation in reversible polymer networks are studied in detail.

Chapter 10 presents an application of the two theoretical frameworks to more complex, but important systems, such as a mixture of polymers and surfactants, and network formation accompanied by polymer conformational transitions.

This work is a result of the research the author has done over the past two decades with many collaborators. I would like to thank Dr. A. Matsuyama and Dr. M. Ishida (Shoji) for their outstanding contribution to the hydration and thermoreversible gelation of water-soluble polymers while they were graduate students at Tokyo University of Agriculture and Technology. I would also like to thank Dr. Y. Okada who, while studying for his Ph.D under my supervision at Kyoto University, took the initiative of studying the cooperative hydration of temperature-sensitive polymers, giving me no option but to get up to date on this topic. The contribution by Dr. T. Koga to the rheological study of transient networks must also be acknowledged.

| xv |
|----|
| )  |

It is also a great pleasure to thank Professor Françoise M. Winnik for her research collaboration over the past decade: she has never stopped stimulating and encouraging me with her enthusiasm in the research of water-soluble polymers.

Finally, it is my great pleasure and honor to thank Professor Ryogo Kubo and Sir Sam Edwards, who in my early career introduced me to the fascinating world of statistical mechanics.

Fumihiko Tanaka Kyoto July 2010