Polymer Physics

The field of polymer science has advanced and expanded considerably in recent years, encompassing broader ranges of materials and applications. In this book, the author unifies the subject matter, pulling together research to provide an updated and systematic presentation of polymer association and thermoreversible gelation, one of the most rapidly developing areas in polymer science. Starting with a clear presentation of the fundamental laws of polymer physics, subsequent chapters discuss a new theoretical model that combines thermodynamic and rheological theory. Recent developments in polymer physics are explored, along with important case studies on topics such as self-assembly, supramolecules, thermoreversible gels, and water-soluble polymers. Throughout the book, a balance is maintained between theoretical descriptions and practical applications, helping the reader to understand complex physical phenomena and their relevance in industry. This book has wide interdisciplinary appeal and is aimed at students and researchers in physics, chemistry, and materials science.

Fumihiko Tanaka is Professor in the Department of Polymer Chemistry at the Graduate School of Engineering, Kyoto University. Professor Tanaka has published extensively and his current research interests are in theoretical aspects of phase transitions in polymeric systems, polymer association, and thermoreversible gelation.
Polymer Physics

Applications to Molecular Association and Thermoreversible Gelation

FUMIHIKO TANAKA

Kyoto University, Japan
Dedicated to the memory of
Professor Walter H. Stockmayer
and to
Sir Sam Edwards

Miracle of polymer science
Contents

Preface
page xiii

1 **Statistical properties of polymer chains**

1.1 Conformation of polymers
1.1.1 Internal coordinates of a polymer chain and its hindered rotation 1
1.1.2 Coarse-grained models of polymer chains 3
1.2 The ideal chain 5
1.2.1 Single-chain partition function 5
1.2.2 Tension–elongation curve 8
1.2.3 Distribution of the end-to-end vector 10
1.3 Fundamental properties of a Gaussian chain 11
1.4 Effect of internal rotation and stiff chains 13
1.4.1 Characteristic ratio 13
1.4.2 Persistence length and the stiff chain 15
1.5 Excluded-volume effect 16
1.6 Scaling laws and the temperature blob model 19
1.7 Coil–globule transition of a polymer chain in a poor solvent 21
1.8 Coil–helix transition 23
1.9 Hydration of polymer chains 33
1.9.1 Statistical models of hydrated polymer chains 33
1.9.2 Models of the globules and hydrated coils 38
1.9.3 Competitive hydrogen bonds in mixed solvents 39

References 44

2 **Polymer solutions**
page 46

2.1 Thermodynamics of phase equilibria 46
2.1.1 Gibbs’ phase rule and phase diagrams 46
2.1.2 Stability of a phase 48
2.1.3 Liquid–liquid separation by a semipermeable membrane 52
2.1.4 Spontaneous liquid–liquid phase separation 55
2.2 Characteristic properties of polymer solutions 57
2.2.1 Vapor pressure and osmotic pressure 58
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.2</td>
<td>Viscosity</td>
<td>61</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Diffusion of a polymer chain</td>
<td>65</td>
</tr>
<tr>
<td>2.3</td>
<td>Lattice theory of polymer solutions</td>
<td>69</td>
</tr>
<tr>
<td>2.3.1</td>
<td>The free energy of mixing</td>
<td>69</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Properties of polymer solutions predicted by Flory–Huggins lattice theory</td>
<td>74</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Extension to many-component polymer solutions and blends</td>
<td>79</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Refinement beyond the simple mean field approximation</td>
<td>81</td>
</tr>
<tr>
<td>2.4</td>
<td>Scaling laws of polymer solutions</td>
<td>87</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Overlap concentration</td>
<td>87</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Correlation length</td>
<td>89</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Radius of gyration</td>
<td>90</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Osmotic pressure</td>
<td>91</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Phase equilibria (reduced equation of states)</td>
<td>92</td>
</tr>
<tr>
<td>2.4.6</td>
<td>Molecular motion</td>
<td>94</td>
</tr>
</tbody>
</table>

References 95

3 Classical theory of gelation 97

3.1 What is a gel? 97
3.1.1 Definition of a gel 97
3.1.2 Classification of gels 97
3.1.3 Structure of gels and their characterization 98
3.1.4 Examples of gels 100

3.2 Classical theory of gelation 103
3.2.1 Random branching 104
3.2.2 Polycondensation 106
3.2.3 Polydisperse functional monomers 111
3.2.4 Cross-linking of prepolymers 113

3.3 Gelation in binary mixtures 114
3.3.1 Finding the gel point using the branching coefficient 114
3.3.2 Molecular weight distribution function of the binary mixtures $R(A_f)/R(B_g)$ 116
3.3.3 Polydisperse binary mixture $R(A_f)/R(B_g)$ 118
3.3.4 Gels with multiple junctions 119

3.A Moments of the Stockmayer distribution function 121
3.B Cascade theory of gelation 122

References 127

4 Elasticity of polymer networks 128

4.1 Thermodynamics of rubber elasticity 128
4.1.1 Energetic elasticity and entropic elasticity 128
4.1.2 Thermoelastic inversion 131
4.1.3 Gough-Joule effect 131
Contents

4.2 Affine network theory
4.2.1 Local structure of cross-linked rubbers
4.2.2 Affine network theory
4.2.3 Elastically effective chains
4.2.4 Simple description of thermoelastic inversion
4.3 Phantom network theory
4.3.1 Micronetworks of tree form
4.3.2 Fluctuation theorem and the elastic free energy
4.4 Swelling experiments
4.5 Volume transition of gels
4.5.1 Free swelling
4.5.2 Swelling under uniaxial elongation
4.6 Networks made up of nonlinear chains
References

5
Associating polymer solutions and thermoreversible gelation
5.1 Historical survey of the study of associating solutions
5.2 Statistical thermodynamics of associating polymers
5.2.1 Pregel regime
5.2.2 Sol–gel transition and postgel regime
5.3 Renormalization of the interaction parameters
5.4 Phase separation, stability limit, and other solution properties
5.5 Scattering function of associating polymer mixtures
5.5A Renormalization of the interaction parameters
5.5B Scattering function in RPA
5.5C Spinodal condition in RPA
References

6
Nongelling associating polymers
6.1 Dimer formation as associated block-copolymers
6.2 Linear association and ring formation
6.3 Side-chain association
6.4 Hydration in aqueous polymer solutions and closed-loop miscibility gaps
6.5 Cooperative hydration in solutions of temperature-responsive polymers
6.6 Hydrogen-bonded liquid-crystalline supramolecules
6.7 Polymeric micellization
References

7
Thermoreversible gelation
7.1 Models of thermoreversible gelation
7.2 Application of the classical theory of gelation
References

© in this web service Cambridge University Press
www.cambridge.org
<table>
<thead>
<tr>
<th>7.2.1</th>
<th>Pregel regime</th>
<th>226</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.2</td>
<td>The gel point</td>
<td>227</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Postgel regime</td>
<td>228</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Phase diagrams of thermoreversible gels</td>
<td>232</td>
</tr>
<tr>
<td>7.3</td>
<td>Thermodynamics of sol–gel transition as compared with Bose–Einstein condensation</td>
<td>233</td>
</tr>
<tr>
<td>7.4</td>
<td>Thermoreversible gels with multiple cross-linking</td>
<td>235</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Multiple association</td>
<td>235</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Distribution function of multiple trees</td>
<td>237</td>
</tr>
<tr>
<td>7.4.3</td>
<td>The average molecular weight and the condition for the gel point</td>
<td>240</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Solution properties of thermoreversible gels with multiple junctions</td>
<td>242</td>
</tr>
<tr>
<td>7.4.5</td>
<td>Simple models of junction multiplicity</td>
<td>243</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>245</td>
</tr>
</tbody>
</table>

8 Structure of polymer networks | 247 |
8.1	Local structure of the networks–cross-linking regions	247
8.2	Global structure of the networks – elastically effective chains and elastic modulus	250
8.2.1	Fundamental parameters of the network topology	250
8.2.2	Structure parameters of multiplex cross-linked gels	252
8.2.3	The number of elastically effective chains	258
8.3	Percolation model	262
8.3.1	Percolation threshold	262
8.3.2	Distribution function of clusters	265
8.3.3	Percolation in one dimension	266
8.3.4	Site percolation on the Bethe lattice	268
8.4	Self-similarity and scaling laws	269
8.4.1	Static scaling laws	269
8.4.2	Viscoelastic scaling laws	273
8.5	Percolation in continuum media	276
8.5.1	Critical volume fraction of percolation	276
8.5.2	Gelation of sticky hard spheres (Baxter’s problem)	277
References		279

9 Rheology of thermoreversible gels | 281 |
9.1	Networks with temporal junctions	281
9.1.1	Models of transient networks	282
9.1.2	Equilibrium solutions	286
9.1.3	Stress–strain relation	289
9.1.4	Integral form of the equation	290
9.1.5	Generalization of the model	292
9.2 Linear response of transient networks 292
 9.2.1 The Green–Tobolsky limit 295
 9.2.2 Exponential dissociation rate 296
 9.2.3 Power-law dissociation rate 297
 9.2.4 Coupling to the tension 298

9.3 Stationary flows 299
 9.3.1 GT limit and quadratic β 300
 9.3.2 Coupling to the tension 302
 9.3.3 Expansion in powers of the shear rate 303
 9.3.4 Elongational flows 305

9.4 Time-dependent flows 309
 9.4.1 Transient flows of Gaussian networks in the GT limit 309
 9.4.2 Start-up shear flows with tension–dissociation coupling 311
 9.4.3 Nonlinear stress relaxation 316

9.A Expansion in powers of the shear rate and time 321

9.B Solvable model of the quadratic dissociation rate 322
 9.B.1 Start-up and stationary flows 323
 9.B.2 Stress relaxation 328

References 329

10 Some important thermoreversible gels 331

10.1 Polymer–surfactant interaction 331
 10.1.1 Modification of the gel point by surfactants 333
 10.1.2 Surfactant binding isotherms 335
 10.1.3 CMC of the surfactant molecules 336
 10.1.4 High-frequency elastic modulus 338

10.2 Loop-bridge transition 339

10.3 Competing hydration and gelation 345
 10.3.1 Models of competitive hydration and gelation 345
 10.3.2 Degree of hydration and the gel point 349

10.4 Coexisting hydration and gelation 352

10.5 Thermoreversible gelation driven by polymer conformational change 359
 10.5.1 Models of conformational transition 361
 10.5.2 Theory of gelation with conformation change 363
 10.5.3 Simple models of excitation 367

10.6 Thermoreversible gelation driven by the coil–helix transition of polymers 370
 10.6.1 Models of helix association 372
 10.6.2 Multiple helices 374
 10.6.3 Multiple association of single helices 378

References 379

Index 383
Polymer science has expanded over the past few decades and shifted its centre of interest to encompass a whole new range of materials and phenomena. Fundamental investigations on the molecular structure of polymeric liquids, gels, various phase transitions, alloys and blends, molecular motion, flow properties, and many other interesting topics, now constitute a significant proportion of the activity of physical and chemical laboratories around the world.

But beneath the luxuriance of macromolecular materials and observable phenomena, there can be found a common basis of concepts, hypotheses, models, and mathematical deductions that are supposed to belong to only few theories.

One of the major problems in polymer physics which remain unsolved is that of calculating the materials properties of self-assembled supramolecules, gels, molecular complexes, etc., in solutions of associating polymers from first principles, utilizing only such fundamental properties as molecular dimensions, their functionality, and intermolecular associative forces (hydrogen bonding, hydrophobic force, electrostatic interaction, etc.).

Theoretical studies of polymer association had not been entirely neglected, but their achievements were fragmentary, phenomenological, and lacked mathematical depth and rigor. What I have tried to do, therefore, is to show how certain physically relevant phenomena derive from the defining characteristics of various simple theoretical model systems.

The goal of this book is thus to present polymer physics as generally as possible, striving to maintain the appropriate balance between theoretical descriptions and their practical applications.

During the decade that has just ended the application of the method of lattice theory (by Flory and Huggins), the scaling theory (by de Gennes) of polymer solutions, and the theory of gelation reaction (by Flory and Stockmayer) has resulted in the development of what has become known as the “theory of associating polymer solutions.” This has brought the aforementioned unsolved problem markedly nearer to the resolution.

In this book special reference is made to polymer associations of various types – binding of small molecules by polymers, polymer hydration, block-copolymerization, thermoreversible gelation, and their flow properties. These topics do not, by any means, exhaust the possibilities of the method. They serve, however, to illustrate its power. The author hopes that others will be stimulated by what has already been done to attempt further applications of the theory of associating polymer solutions.
Preface

Most of the subject matter treated in the present book has been hitherto available only in the form of original papers in various scientific journals. These have been very diverse and fragmented. Consequently, they may have appeared difficult to those who start the research and practice on the subjects. The opportunity has therefore been taken to develop the theoretical bases from the unified view and to give the practical applications in somewhat greater detail.

The first four chapters, making up the fundamental part, contain reviews of the latest knowledge on polymer chain statistics, their reactions, their solution properties, and the elasticity of cross-linked networks. Each chapter starts from the elementary concepts and properties with a description of the theoretical methods required to study them. Then, they move to an organized description of the more advanced studies, such as coil–helix transition, hydration, the lattice theory of semiflexible polymers, entropy catastrophe, gelation with multiple reaction, cascade theory, the volume phase transition of gels, etc. Most of them are difficult to find in the presently available textbooks on polymer physics.

Next, Chapter 5 presents the equilibrium theory of associating polymer solutions, one of the major theoretical frameworks for the study of polymer association and thermoreversible gelation.

This is followed by three chapters on the application of the theory to nongelling and gelling solutions. Chapter 6 on nongelling associating solutions includes block polymerization by hydrogen bonding, hydration of water-soluble polymers, hydrogen-bonding liquid crystallization, and micellization by hydophobic aggregation. Chapter 7 treats more interesting but difficult gelling solutions, with stress on phase separation and thermoreversible gelation with junctions of variable multiplicity. Chapter 8 presents two major methods for the study of gels near the sol–gel transition point. One is the topological method on the basis of graph theory, and the other is scaling theory on the basis of the percolation picture.

Chapter 9 presents the transient network theory of associating polymer solutions, which is the other one of the two major theories treated in this book. It studies the dynamic and rheological flow properties of structured solutions from a molecular point of view. Thus, linear complex modulus, nonlinear stationary viscosity, start-up flows, and stress relaxation in reversible polymer networks are studied in detail.

Chapter 10 presents an application of the two theoretical frameworks to more complex, but important systems, such as a mixture of polymers and surfactants, and network formation accompanied by polymer conformational transitions.

This work is a result of the research the author has done over the past two decades with many collaborators. I would like to thank Dr. A. Matsuyama and Dr. M. Ishida (Shoji) for their outstanding contribution to the hydration and thermoreversible gelation of water-soluble polymers while they were graduate students at Tokyo University of Agriculture and Technology. I would also like to thank Dr. Y. Okada who, while studying for his Ph.D under my supervision at Kyoto University, took the initiative of studying the cooperative hydration of temperature-sensitive polymers, giving me no option but to get up to date on this topic. The contribution by Dr. T. Koga to the rheological study of transient networks must also be acknowledged.
It is also a great pleasure to thank Professor Françoise M. Winnik for her research collaboration over the past decade: she has never stopped stimulating and encouraging me with her enthusiasm in the research of water-soluble polymers.

Finally, it is my great pleasure and honor to thank Professor Ryogo Kubo and Sir Sam Edwards, who in my early career introduced me to the fascinating world of statistical mechanics.

Fumihiko Tanaka

Kyoto July 2010