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Introduction

1.1 The aim of this book

Knowledge of risk models and the assessment of risk will be of great impor-
tance to actuaries as they apply their skills and expertise today and in the future.
The title of this book “Risk Modelling in General Insurance: From Principles
to Practice” reflects our intention to present a wide range of statistical and
probabilistic topics relevant to actuarial methodology in general insurance. Our
aim is to achieve this in a focused and coherent manner, which will appeal to
actuarial students and others interested in the topics we cover.

We believe that the material is suitable for advanced undergraduates and stu-
dents taking master’s degree courses in actuarial science, and also those taking
mathematics and statistics courses with some insurance mathematics content.
In addition, students with a strong quantitative/mathematical background tak-
ing economics and business courses should also find much of interest in the
book. Prerequisites for readers to benefit fully from the book include first
undergraduate-level courses in calculus, probability and statistics. We do not
assume measure theory.

Our aim is that readers who master the content will extend their knowledge
effectively and will build a firm foundation in the statistical and actuarial con-
cepts and their applications covered. We hope that the approach and content
will engage readers and encourage them to develop and extend their critical
and comparative skills. In particular, our aim has been to provide opportuni-
ties for readers to improve their higher-order skills of analysis and synthesis of
ideas across topics.

A key feature of our approach is the inclusion of a large number of worked
examples and extensive sets of exercises, which we think readers will find
stimulating. In addition, we include three case studies, each of which brings
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2 Introduction

together a number of concepts and applications from different parts of the
book.

While the book covers much of the international syllabuses for professional
actuarial examinations in risk models, it goes further and deeper in places.

The book includes appropriate references to the open source (free and eas-
ily downloadable) statistical software package R throughout, giving readers
opportunities to learn how simple code and functions can be used profitably in
an actuarial context.

1.2 Notation and prerequisites

The tools of probability theory are crucial for the study of the risk models in
this book, and, in §1.2.1, we give an overview of the required basic concepts
of probability. This overview also serves to introduce the notation that we will
use throughout the book. In §1.2.2 and §1.2.3, we indicate the assumed pre-
requisites in statistics and simulation, and finally in §1.2.4 we give information
about the statistical software package R.

1.2.1 Probability

We start with definitions and notation for basic quantities related to a random
variable X. Our first such quantity is the distribution function (or cumulative
distribution function) FX of X, given by

FX(x) = Pr(X ≤ x), x ∈ R.
The function FX is non-decreasing and right-continuous. It satisfies 0 ≤
FX(x) ≤ 1 for all x in R, lim

x→∞ FX(x) = 1 and lim
x→−∞ FX(x) = 0. Most of the

random variables in this book are non-negative, i.e. they take values in [0,∞).
If V is a non-negative random variable, then we assume without comment that
FV (v) = 0 for v < 0. For a non-negative random variable V , the tail of FV is
Pr(V > v) = 1 − FV (v) for v ≥ 0.

A continuous random variable Y has a probability density function fY , which
is a non-negative function fY , with

∫ ∞
−∞ fY (y)dy = 1, such that the distribution

function of Y is

FY (y) =
∫ y

−∞
fY (t)dt, y ∈ R.

This means that FY is a continuous function. The probability that Y is in a set
A is Pr(Y ∈ A) =

∫
A

fY (y)dy. (For those readers who are familiar with measure
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1.2 Notation and prerequisites 3

theory, note that we will tacitly assume the word “measurable” where neces-
sary. Those readers who are not familiar with measure theory may ignore this
remark, but may like to note that a rigorous treatment of probability theory
requires more careful definitions and statements than appear in introductory
courses and in this overview.)

Let N be a discrete random variable that takes values in N = {0, 1, 2, . . .}.
Then Pr(N = x), x ∈ R, is the probability mass function of N. We see that
Pr(N = x) = 0 for x � N, so that, for a discrete random variable concentrated
on N, the probability mass function is specified by Pr(N = k) for k ∈ N. We
then have

∑∞
k=0 Pr(N = k) = 1. The distribution function of N is

FN(x) =
∑
{k:k≤x}

Pr(N = k), x ∈ R,

and the graph of FN is a non-decreasing step function, with an upward jump of
size Pr(N = k) at k for all k ∈ N. The probability that N is in a set A is

Pr(N ∈ A) =
∑
{k:k∈A}

Pr(N = k).

We use the notation E[X] for the expected value (or expectation, or mean) of
a random variable X. The expectation of the continuous random variable Y is

E[Y] =
∫ ∞

−∞
y fY (y)dy,

while for the discrete random variable N taking values in N, the expectation is

E[N] =
∞∑

k=0

k Pr(N = k).

We note that there are various possibilities for the expectation: it may be finite,
it may take the value +∞ or −∞, or it may not be defined. The expectation of
a non-negative random variable is either a finite non-negative value or +∞.

For a real-valued function h on R and a continuous random variable Y , the
expectation of h(Y) is

E
[
h(Y)

]
=

∫ ∞

−∞
h(y) fY (y)dy,

whenever the integral is defined, and for a discrete random variable N taking
values in N, the expectation of h(N) is

E
[
h(N)

]
=

∞∑
k=0

h(k) Pr(N = k).
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4 Introduction

For r ≥ 0, the rth moment of X is E[Xr], when it is defined. The rth moment
of a continuous random variable Y is∫ ∞

−∞
yr fY (y)dy,

and the rth moment of the discrete random variable N taking values in N is

∞∑
k=0

kr Pr(N = k).

Recall that if E[|X|r] is finite for some r > 0, then E[|X|s] is finite for all
0 ≤ s ≤ r. Throughout the book, when we write down a particular moment
such as E[N3], then, unless otherwise stated, we assume that this moment is
finite.

The rth central moment of a random variable X is E[(X−E[X])r]. The second
central moment of X is called the variance of X, and is denoted by Var[X]. The
variance of X is given by

Var[X] = E
[
(X − E[X])2] = E[X2] − (E[X]

)2
.

The standard deviation of X is SD[X] =
√

Var[X]. We define the skewness of X
to be the third central moment, E[(X − E[X])3], and the coefficient of skewness
to be given by

E[(X − E[X])3]/
(
(SD[X])3). (1.1)

We define the coefficient of kurtosis of X to be

E[(X − E[X])4]/
(
(SD[X])4), (1.2)

but note that various definitions are given in the literature; see the discussion
in §2.2.5.

The covariance of random variables X and W is given by

Cov[X,W] = E
[
(X − E[X])(W − E[W])

]
= E[XW] − E[X]E[W].

The correlation between random variables X and W (with Var[X] > 0 and
Var[W] > 0) is given by

Corr[X,W] =
Cov[X,W]√

Var[X] Var[W]
.

For random variables X1, . . . , Xn we have

Var[X1 + · · · + Xn] =
n∑

i=1

Var[Xi] + 2
∑
i< j

Cov[Xi, Xj].
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1.2 Notation and prerequisites 5

Random variables X1, . . . , Xn are independent if, for all x1, . . . , xn in R,

Pr(X1 ≤ x1, . . . , Xn ≤ xn) = Pr(X1 ≤ x1) . . . Pr(Xn ≤ xn).

For independent random variables X1, . . . , Xn and functions h1, . . . , hn, we have

E
[
h1(X1) . . . hn(Xn)

]
= E

[
h1(X1)

]
. . .E

[
hn(Xn)

]
.

This means that, for independent random variables X1, . . . , Xn, we have

Var[X1 + · · · + Xn] = Var[X1] + · · · + Var[Xn],

because, for i � j, the independence of Xi and Xj implies that Cov[Xi, Xj] = 0.
Random variables X1, X2, . . . are independent if every finite subset of the Xi

is independent. We say X1, X2, . . . are independent and identically distributed
(iid) if they are independent and all have the same distribution.

Conditioning is one of the main tools used throughout this book, and it is
often the key to a neat approach to derivation of properties and features of
the risk models considered in later chapters. The conditional expectation of X
given W is denoted E[X | W]. The very useful conditional expectation formula
states that

E
[
E[X | W]

]
= E[X]. (1.3)

The conditional variance of X given W is defined to be

Var[X | W] = E
[(

X − E[X | W]
)2 | W]

= E
[
X2 | W] − (E[X | W]

)2
.

The conditional variance formula is

Var[X] = E
[
Var[X | W]

]
+ Var

[
E[X | W]

]
. (1.4)

This may be seen by considering the terms on the right-hand side of (1.4). We
have

E [Var[X | W]] = E
[
E[X2 | W] − (E[X | W])2

]
= E

[
X2] − E [(E[X | W])2

]
,

where we have used the conditional expectation formula, and

Var
[
E[X | W]

]
= E

[
(E[X | W])2

]
− (E[E[X | W]

])2
= E

[
(E[X | W])2

]
− (E[X])2 ,

on using the conditional expectation formula again. Adding these terms it is
easy to see that the right-hand side of (1.4) is equal to the left-hand side.
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6 Introduction

We assume that moment generating functions, probability generating func-
tions and their properties are familiar to the reader. The moment generating
function of a random variable X is denoted

MX(r) = E[erX], (1.5)

and this may not be finite for all r in R. For every random variable X, we have
MX(0) = 1, and so the moment generating function is certainly finite at r = 0.
If MX(r) is finite for |r| < h for some h > 0, then, for any k = 1, 2, . . ., the
function MX(r) is k-times differentiable at r = 0, with

M(k)
X (0) = E

[
Xk], (1.6)

with E
[|X|k] finite. If random variables X and W have MX(r) = MW (r) for all

|r| < h for some h > 0, then X and W have the same distribution.
The moment generating function of a continuous random variable Y is

MY (r) =
∫ ∞

−∞
ery fY (y)dy.

The moment generating function of a discrete random variable N concentrated
on N is

MN(r) =
∞∑

k=0

erk Pr(N = k).

The probability generating function of N is

GN(z) = E
[
zN] = ∞∑

k=0

zk Pr(N = k), (1.7)

for those z in R for which the series converges absolutely. Since the series
converges for |z| ≤ 1 (and possibly for a larger set of z-values), we see that the
radius of convergence of the series is greater than or equal to 1. If E[N] < ∞
then

E[N] = G′N(1),

and if E
[
N2] < ∞ then

Var[N] = G′′N(1) +G′N(1) − (G′N(1)
)2
,

where G(k)
N (1) = lim

z↑1
G(k)

N (z) if the radius of convergence of GN is 1. From (1.5)

and (1.7) we have

GN(z) = MN
(

log(z)
)

and MN(r) = GN
(
er),
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1.2 Notation and prerequisites 7

where here, and throughout the book, when we write down relationships
between generating functions, we assume the phrase “for values of the
argument for which both sides are finite”.

Moment generating functions and probability generating functions are both
examples of transforms. Transforms are useful for calculations involving sums
of independent random variables. Let X1, . . . , Xn be independent random vari-
ables, and let MXi be the moment generating function of Xi, i = 1, . . . , n. Then
the moment generating function of T = X1 + · · · + Xn is the product of the
moment generating functions of the Xi:

MT (r) = MX1 (r) . . . MXn (r). (1.8)

Similarly, let N1, . . . ,Nn be independent discrete random variables taking val-
ues in N, and let GNi be the probability generating function of Ni, i = 1, . . . , n.
Then the probability generating function of M = N1 + · · · + Nn is

GM(z) = GN1 (z) . . .GNn (z). (1.9)

Sums of independent random variables play an important role in the models in
this book, so transform methods will be important for us.

The cumulant generating function KX(t) of a random variable X is given by

KX(t) = log
(
MX(t)

)
,

and this is discussed further in §2.2.5.
In the above discussion, we have given separate expectation formulae for

continuous random variables and for discrete random variables. We now intro-
duce a more general notation that covers both of these cases (and other cases
as well). For a general random variable X with distribution function FX , we
write

E[X] =
∫

xFX(dx). (1.10)

This is a Lebesgue–Stieltjes integral. We can think of the integral as shorthand
notation for

∫
x fX(x)dx if X is continuous with density fX , and as shorthand

for
∑∞

k=0 k Pr(X = k) if X is discrete and takes values in {0, 1, 2, . . .}. This
notation means we can give just one formula that covers both continuous and
discrete random variables. However, it also covers more general random vari-
ables. Later in this book we will meet and use random variables which are
neither purely continuous, nor purely discrete, but which have both a discrete
part and a continuous part. To make this precise, suppose that there exist real
numbers x1, . . . , xm and p1, . . . , pm, where 0 ≤ pk ≤ 1 for k = 1, . . . ,m, and
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8 Introduction

where
∑m

k=1 pk ≤ 1, and suppose there also exists a non-negative function f ,
with

∫ ∞
−∞ f (t)dt ≤ 1, such that the distribution function of X is

FX(x) = Pr(X ≤ x) =
∑
{k:xk≤x}

pk +

∫ x

−∞
f (t)dt. (1.11)

Of course, we must have

m∑
k=1

pk +

∫ ∞

−∞
f (x)dx = 1.

In this case, the distribution of X consists of a discrete part, specified by the xk

and the pk (with Pr(X = xk) = pk), and also a continuous part, specified by f .
The distribution function FX has an upward jump of size pk at xk, k = 1, . . . ,m,
and is continuous and non-decreasing (and not necessarily flat) between these
jumps. We say that the distribution of X has an atom at xk (of size pk), for
k = 1, . . . ,m. For this X, and for a set A, we have

Pr(X ∈ A) =
∫

A
FX(dx) =

∑
{k:xk∈A}

pk +

∫
A

f (x)dx. (1.12)

As in (1.10), the expectation of X is E[X] =
∫

xFX(dx), and, with FX as in
(1.11), the integral is∫

xFX(dx) =
m∑

k=1

kpk +

∫ ∞

−∞
x f (x)dx. (1.13)

In general, for a function h, we have

E[h(X)] =
∫

h(x)FX(dx), (1.14)

and, when h(x) = erx, we find that the moment generating function of X is

MX(r) = E
[
erX] = ∫ erxFX(dx). (1.15)

With FX as in (1.11), the equations (1.14) and (1.15) become

E[h(X)] =
m∑

k=1

h(k)pk +

∫ ∞

−∞
h(x) f (x)dx

and

MX(r) =
∫

erxFX(dx) =
m∑

k=1

erk pk +

∫ ∞

−∞
erx f (x)dx.
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1.2 Notation and prerequisites 9

Note that a Lebesgue–Stieltjes integral over an interval (a, b], a ≤ b, is written∫
(a,b]

. . . FX(dx),

where . . . is to be replaced by the required function to be integrated. Finally,
we have, from (1.12),∫

(a,b]
FX(dx) = Pr

(
X ∈ (a, b]

)
= FX(b) − FX(a−),

where FX(a−) denotes lim
x→a−

FX(x), and x → a− means that x converges to a

from the left.
In this subsection, we have given a brief overview of probability. For more

discussion and details, see, for example, Grimmett and Stirzaker (2001), Gut
(2009) and the more advanced Gut (2005).

1.2.2 Statistics

We assume that the reader has met point estimation and properties of esti-
mators (for example, the idea of an unbiased estimator), confidence intervals
and hypothesis tests (for example, t tests, χ2 tests, Kolmogorov–Smirnov test).
We further assume a working knowledge of maximum likelihood estimators
and their large sample properties. Familiarity with plots, such as histograms
and quantile (or Q–Q) plots, is assumed, in addition to familiarity with the
empirical distribution function. Useful references are DeGroot and Schervish
(2002) and Casella and Berger (1990). The introduction to §2.4 contains an
overview of some ideas and methods in statistics. At various points in the book
we use more advanced statistical ideas – whenever we do this, references to
appropriate texts are given.

1.2.3 Simulation

We take as prerequisite some knowledge of simulation of observations from
a given distribution using a pseudo-random number generator and various
techniques, such as the inverse transform (or inversion or probability inte-
gral transform) method. For more details and background, see, for example,
chapter 11 in DeGroot and Schervish (2002) and chapter 6 in Morgan (2000).

1.2.4 The statistical software package R

The simulations, statistical analyses and numerical approximations in this book
are carried out using the statistical software package R. We assume familiarity
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10 Introduction

with how R works and with basic commands in R. Useful references are Ven-
ables and Ripley (2002) and Verzani (2005). The package R is available for
(free) download; see http://cran.r-project.org/.

There is an add-on actuarial package actuar, and this can be installed using
the Installpackage(s) submenu of the Packages menu. Choose a conve-
nient CRAN mirror, and then select the package actuar for installation. It
only has to be installed once, but it must be attached to the R workspace at the
beginning of each R session, using the R command library(actuar).
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