

Rock Fractures in Geological Processes

Rock fractures largely control many of the Earth's dynamic processes. Examples include plate-boundary formation and development, tectonic earthquakes, volcanic eruptions, and fluid transport in the crust. How rock fractures form and develop is of fundamental importance in many theoretical and applied fields of earth sciences and engineering, such as volcanology, seismology, hydrogeology, petroleum geology, natural hazards, and engineering geology. An understanding of rock fractures is essential for effective exploitation of many of the Earth's natural resources including ground water, geothermal water, and petroleum.

This book combines results from fracture mechanics, materials science, rock mechanics, structural geology, hydrogeology, and fluid mechanics to explore and explain fracture processes and fluid transport in the crust. Basic concepts are developed from first principles and are illustrated with numerous worked examples that link models of geological processes to real field observations and measurements. Calculations in the worked examples are presented in detail with simple steps that are easy to follow – providing the readers with the skills to formulate and quantitatively test their own models, and to practise their new skills using real data in a range of applications. Review questions and numerical exercises are given at the end of each chapter, and further homework problems are available at www.cambridge.org/gudmundsson. Solutions to all numerical exercises are available to instructors online.

Rock Fractures in Geological Processes is designed for courses at the advanced-undergraduate and beginning-graduate level, but also forms a vital resource for researchers and industry professionals concerned with fractures and fluid transport in the Earth's crust.

Agust Gudmundsson holds a University of London Chair of structural geology at Royal Holloway. He has a Ph.D. in Tectonophysics from the University of London and has previously held positions as research scientist at the University of Iceland, professor and Chair at the University of Bergen, Norway, and professor and Chair at the University of Göttingen, Germany. Professor Gudmundsson's research interests include volcanotectonics, seismotectonics, and fluid transport in rock fractures and reservoirs. He has published more than 130 research papers on these and related topics, is on the editorial boards of *Terra Nova*, *Tectonophysics*, *Journal of Geological Research*, and *Journal of Volcanology & Geothermal Research*, and is a fellow of the Iceland Academy of Sciences and Academia Europaea. The book draws on Professor Gudmundsson's extensive experience in field, analytical, and numerical studies of crustal fractures and of teaching undergraduate and graduate courses in structural geology, geodynamics, hydrogeology, rock mechanics, reservoir geoscience, seismotectonics, and volcanotectonics.

Rock Fractures in Geological Processes

AGUST GUDMUNDSSON

Royal Holloway University of London

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge. It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9780521863926

© Agust Gudmundsson 2011

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2011 4th printing 2015

Printed in the United Kingdom by TJ International Ltd, Padstow, Cornwall

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging in Publication data
Gudmundsson, Agust.

 $Rock\ Fractures\ in\ Geological\ Processes\ /\ Agust\ Gudmundsson.$

p. cm

Includes bibliographical references and index.

ISBN 978-0-521-86392-6 (hardback)

1. Rocks-Fracture. 2. Rock mechanics. 3. Hydrogeology. 4. Geology, Structural.

5. Fluid mechanics. I. Title.

TA706.G83 2011 624.1′5132–dc22 2010051429

ISBN 978-0-521-86392-6 Hardback

Additional resources for this publication at www.cambridge.org/gudmundsson

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface			page xi
$A \alpha$	cknow	ledgements	xiii
1	Introd	luction	1
•	1.1	Aims	1
	1.2	Rock fractures	1
	1.3	Notation and basic concepts	3
	1.4	Some definitions from structural geology	13
	1.5	How to solve fracture problems	17
	1.6	Accuracy, significant figures, and rounding	20
	1.7	Summary	22
	1.8	Main symbols used	23
	1.9	Worked examples	23
	1.10	Exercises	26
	Refer	ences and suggested reading	26
2	Stress		28
_	2.1	Aims	28
	2.2	Some basic definitions	28
	2.3	The concept of stress	29
	2.4	Principal stresses	35
	2.5	Stresses on an arbitrary plane	36
	2.6	Mohr's circles	38
	2.7	Special stress states	42
	2.8	Stress fields	46
	2.9	Summary	49
	2.10	Main symbols used	51
	2.11	Worked examples	52
	2.12	Exercises	61
	Refer	ences and suggested reading	62
3	Displa	cement and strain	63
	3.1	Aims	63
	3.2	Basic definitions	63
	3.3	Displacement	66
	3.4	Strain	71

٧

vi Contents

	3.5	Deformation of a rock body	76
	3.6	Measuring strain	77
	3.7	Summary	81
	3.8	Main symbols used	81
	3.9	Worked examples	82
	3.10	Exercises	87
	Refer	rences and suggested reading	87
4	Relati	on between stress and strain	89
	4.1	Aims	89
	4.2	One-dimensional Hooke's law	89
	4.3	Three-dimensional Hooke's law	92
	4.4	Elastic constants	95
	4.5	Rock stress	110
	4.6	Crustal stress and strain fields	113
	4.7	Strain energy	118
	4.8	Summary	120
	4.9	Main symbols used	122
	4.10	Worked examples	123
	4.11	Exercises	128
	Refer	rences and suggested reading	129
5	Loadiı	ng of brittle rocks to failure	132
	5.1	Aims	132
	5.2	Behaviour of rock under loading	132
	5.3	The experimental stress-strain curve	133
	5.4	The main stages leading to brittle failure	139
	5.5	The brittle-ductile transition	140
	5.6	Summary	144
	5.7	Main symbols used	145
	5.8	Worked examples	146
	5.9	Exercises	150
	Refer	rences and suggested reading	151
6	Stress concentration		153
	6.1	Aims	153
	6.2	Basic definitions	153
	6.3	Analogies and elliptical holes	156
	6.4	Circular holes and stress measurements	162
	6.5	Cavities	167
	6.6	Holes close to a free surface	172
	6.7	Holes in anisotropic rocks	176
	6.8	Summary	180

vii Contents

	6.9	Main symbols used	181
	6.10	Worked examples	182
	6.11	Exercises	187
	Refer	rences and suggested reading	188
7	Theor	ies of brittle failure of rocks	190
	7.1	Aims	190
	7.2	Failure and strength	190
	7.3	The Coulomb material	193
	7.4	The Coulomb criterion for rocks	195
	7.5	Some empirical criteria	203
	7.6	The theory of Griffith	205
	7.7	The Griffith criterion for rocks	212
	7.8	A combined rock-failure criterion	213
	7.9	Tresca and von Mises criteria	214
	7.10	Summary	221
	7.11	Main symbols used	223
	7.12	Worked examples	224
	7.13	Exercises	229
	Refer	rences and further reading	231
8	Extens	sion fractures and shear fractures	233
	8.1	Aims	233
	8.2	Basic types of rock fractures	233
	8.3	Tension fractures	237
	8.4	Hydrofractures	239
	8.5	Shear fractures	244
	8.6	Summary	245
	8.7	Main symbols used	245
	8.8	Worked examples	246
	8.9	Exercises	252
	Refer	rences and suggested reading	253
9	Displa	cements and driving stresses of fractures	255
	9.1	Aims	255
	9.2	Crack geometries	255
	9.3	Displacement modes of cracks	260
	9.4	Tension fractures	265
	9.5	Hydrofractures	270
	9.6	Dip-slip faults	273
	9.7	Strike-slip faults	274
	9.8	Summary	275
	9.9	Main symbols used	276

VIII	Contents

	9.10	Worked examples	277
	9.11	Exercises	284
	Refere	ences and suggested reading	285
10	Tough	ness and fracture mechanics	288
	10.1	Aims	288
	10.2	Toughness	288
		Fracture mechanics	291
	10.4	Toughness of rock	298
		Core, damage zone, and process zone	299
		Basic equations of K and G	302
		Toughness in terms of fracture displacements	306
		Summary	309
	10.9	Main symbols used	310
		Worked examples	311
	10.11	Exercises	315
	Refere	ences and suggested reading	316
11	Field a	nalysis of extension fractures	319
••	11.1	Aims	319
		Types of extension fractures	319
		Tension fractures	320
		Joints	323
		Mineral veins	332
		Dykes	335
		Inclined sheets	338
		Sills	340
		Man-made hydraulic fractures	341
		Field measurements of fractures	342
		Summary	345
		Worked examples	346
		Exercises	350
		ences and further reading	351
12	Field a	nahusia affanika	254
12		nalysis of faults	354
	12.1	Aims	354
	12.2	Dip-slip faults	354
	12.3	Strike-slip faults	359
	12.4	Slickensides and oblique-slip faults	367
	12.5	Summary	368
	12.6	Worked examples	369
	12.7	Exercises	370
	Refer	ences and suggested reading	371

ix Contents

13 Evolu	tion of extension fractures	373
	Aims	373
13.2	Development of tension fractures	373
13.3	•	377
13.4		382
13.5	•	388
13.6	, ,	400
13.7	Summary	404
	Main symbols used	406
	Worked examples	407
) Exercises	412
Refe	rences and suggested reading	413
14 Evolu	tion of faults	416
14.1	Aims	416
14.2	Initiation of faults	416
14.3	Fault growth	430
14.4	Fault damage zone and core	439
14.5	Local stresses in fault zones	441
14.6	Fracture deflection and arrest	447
14.7	Evolution of fault slip	450
14.8	Summary	455
14.9	Main symbols used	457
14.10	Worked examples	458
14.1	Exercises	461
Refe	rences and suggested reading	462
15 Fluid	transport in rocks — the basics	466
15.1	Aims	466
15.2	Fluid transport in porous and fractured rocks	466
15.3	Darcy's law	467
	The cubic law	470
15.5	Fluid transport in a single set of fractures	473
15.6	Fluid transport in two orthogonal sets of fractures	475
15.7	Fractures and permeability	477
15.8	Summary	482
15.9	•	486
	Worked examples	487
	Exercises	491
Refe	rences and suggested reading	492
	transport in faults	496
16.1	Aims	496
16.2	Overview	496

x Contents

16.3	Ground-water flow to fault zones	498
16.4	Ground-water flow along fault zones	502
16.5	Aperture and fluid pressure	507
16.6	Fluid transport in the damage zone	508
16.7	Fluid transport in the core	510
16.8	Permeability development	512
16.9	Summary	515
16.1	Main symbols used	517
16.1	Worked examples	518
16.1	2 Exercises	520
Refe	rences and suggested reading	520
17 Fluid	transport in hydrofractures	525
17.1	Aims	525
17.2	Driving pressure and volumetric flow rate	525
17.3	Man-made hydraulic fractures	530
17.4	Vertical hydrofractures (dykes)	534
17.5	• • • • • • • • • • • • • • • • • • • •	535
	Mineral veins	536
17.7	Summary	539
17.8	•	541
17.9	Worked examples	541
17.1	9 Exercises	551
Refe	rences and suggested reading	552
Appendix	c A: Units, dimensions, and prefixes	557
A.1	SI base units	557
A.2	Derived SI units of some quantities	557
A.3	SI prefixes	558
Appendix	s B: The Greek alphabet	559
Appendix	c C: Some mathematical and physical constants	560
Appendix	c D: Elastic constants	561
D.1	Typical Young's moduli and Poisson's ratios	561
D.2	Relations among the elastic constants for isotropic rock	562
Appendix	ε: Properties of some crustal materials	564
E.1	Rock densities, strengths, and internal friction	564
E.2	General rock and fluid properties	565
Refe	rences	567
Index		570

Preface

Many of the Earth's most fascinating natural processes are related to rock fractures. Volcanic eruptions, tectonic earthquakes, geysers, large landslides and the formation and development of mid-ocean ridges all depend on fracture formation and propagation. Rock fractures are also of fundamental importance in more applied fields such as those related to fluid-filled reservoirs, deep crustal drilling, tunnelling, road construction, dams, geological and geophysical mapping and field geology and geophysics.

There has been great progress in understanding fracture initiation and propagation over the past decades. The results of this progress are summarised in many papers, textbooks and monographs within the fields of fracture mechanics and materials science. Much of this improved knowledge of fracture development is of great relevance for understanding and modelling geological processes that relate to rock fractures.

The purpose of this book is to offer a modern treatment of rock fractures for earth scientists and engineers. The book is primarily aimed at, first, undergraduate or beginning graduate students in geology, geophysics and geochemistry and, second, scientists, engineers and other professionals who deal with rock fractures in their work. The book has been designed so that it can be used (1) for an independent study, (2) as a textbook for a course in rock fractures in geological processes and (3) as a supplementary text for courses in structural geology, seismology, volcanology, hydrogeology, geothermics, hazard studies, engineering geology, rock mechanics and petroleum geology.

Each chapter begins with an overview of aims and ends with a summary of the main topics discussed and a list of all the main symbols used in that chapter. There are many worked examples (solved problems) and exercises (supplementary problems) in each chapter. The worked examples serve to illustrate the theoretical principles and show how they may be applied to fracture-related processes in the crust. The examples and exercises are meant to provide a deeper understanding of the basic principles of rock fractures, so that the reader can use them with great confidence in solving rock-fracture problems.

I have taught much of the material in the book over the past 12 years to earth science students in Norway, Germany and England. The basic material has been used in undergraduate and graduate courses on such diverse topics as volcanotectonics, seismotectonics, structural geology, geodynamics, rock mechanics, rock-fracture mechanics, hydrogeology, petroleum geology and applied geology. While most of these students were educated in geology, many were educated in geophysics, geochemistry, physical geography and engineering. Based on this experience, almost all the material in the book should be suitable for students with a very modest knowledge of mathematics and physics. The only exceptions are parts of Sections 13.4, 13.5 and 14.6, where more advanced mathematics is used. All the necessary physics is explained in the book.

χi

xii Preface

The book is also meant for professional scientists whose work involves rock fractures, in particular fluid transport in fractured rocks. These include geologists, geophysicist, geochemists, hydrogeologists, civil engineers, petroleum engineers and experts in related fields. Many of these may neither have the time nor inclination to read the entire book. I have therefore written the chapters, particularly those in the second half of the book, so as to make each of them comparatively independent of the other chapters. Thus it should generally be possible to read and understand the content of one chapter without having to read all the other chapters. For this reason, and also for pedagogical reasons, there is considerable repetition of various basic principles and results, particularly in the chapters that constitute the second half of the book. The repetition should help in effective learning of the main topics.

As regards referencing of the technical literature, I follow the common tradition of citing comparatively few references in the part of the text dealing with general solid mechanics in the first half of the book. The basic topics treated in this part are well established and are treated in numerous standard textbooks and monographs, many of which are included in the reference lists at the ends of the chapters. Many of the topics discussed in the second half of the book, however, are still the subject of very active research in the field of rock-fracture development and related fluid transport. In this part of the book there are thus many more references in the text, as well as extensive reference lists at the ends of the chapters. Although the reference lists cannot be exhaustive, they indicate the papers and books that were used when writing the chapters and may also serve as guides to the general literature on rock fractures.

Agust Gudmundsson

Acknowledgements

Many colleagues and students have made contributions to this book, some through technical discussions over the years, which have helped in my formulating some of the ideas presented in the book. An exhaustive list of all these people is not possible, but below I mention some colleagues, students and friends who have been most directly involved with the book itself.

First, I would like to mention two colleagues and friends who are no longer with us. Both shared my interest in, and enthusiasm for, rock fractures. One, Neville J. Price, wrote the first monograph on rock fractures, Fault and Joint Development in Brittle and Semi-Brittle Rock, which had very great effects on the field of rock fractures. The other, Jacques Angelier, was the world's leading expert on palaeostresses and their relation to rock fractures – topics that are still at the forefront of fracture-related research.

Then, I would like to mention several colleagues who read and commented on the manuscript. Very helpful reviews of the manuscript were provided by Adelina Geyer, Shigekazu Kusumoto and Sonja L. Philipp. They read the entire manuscript and made many corrections and suggestions for improvement for which I am very gratefully. In addition, many of the numerical models in the book are from my collaboration with Adelina Geyer and Sonja L. Philipp, whereas some of the analytical parts in Chapter 13 are from my collaboration with Shigekazu Kusomoto. Additional numerical models were made in collaboration with Ruth E.B. Andrew, Otilie Gjesdal, Belinda Larsen, Ingrid F. Lotveit and Trine H. Simmenes. I also thank Ken Macdonald, Philip Meredith and Stephen Sparks for providing the very positive, and much appreciated, general comments on the back cover of the book.

Most of the illustrations in the book are either original or have been remade from various sources. All the sources are cited in the reference lists. For some of the illustrations, particularly those that are not much modified, if at all, and are from recent papers, there are also direct citations in the figure captions. Most of the previously published illustrations are from my own papers in various journals (see the note 'Illustrations' below). I thank the publishers for permission to use the illustrations in the book.

Many people have helped with the illustrations, most of which have been modified many times. Some were originally made by the technical staff at the University of Bergen, Norway, and by students and assistants at the University of Göttingen, Germany. Others were originally made by students and colleagues in France, Germany, Iceland, Italy, Norway and Spain. Any list of names would necessarily be incomplete, so I prefer to offer here a warm thank you to all those who have contributed to the illustrations in the book.

Several people provided photographs, as mentioned in the appropriate captions. These include Valerio Acocella, Jacques Angelier, Ines Galindo, Aevar Johannesson and

xiii

xiv

Acknowledgements

Sonja L. Philipp. I am particularly grateful to Valerio Acocella for the photograph on the front cover of the book.

While working on this book, I have received much, and greatly appreciated, help from Nahid Mohajeri. She has redrawn and modified most of the earlier illustrations and made many of the original illustrations in the book.

Although this book project has not received direct funding as such, many of the ideas and results presented have been obtained through many funded projects. In particular, some of the results presented here derive from various projects on seismic and volcanic risk funded by the European Union.

At Cambridge University Press, Laura Clark, Susan Francis, David Hemsley and Emma Walker have been very helpful and positive during the work on the book. In particular, Susan Francis has been very encouraging and patient during the time it took to complete the book. I take this opportunity to thank Cambridge University Press for a splendid collaboration.

Agust Gudmundsson

Illustrations

Apart from the papers cited in the appropriate figure captions, the following papers are the main sources for the illustrations modified from scientific journals. I am an author on all the papers; the titles and other details are in the reference lists. *Earth-Science Reviews*, **79**, 1–31, 2006 (Figs. 2.10, 6.13, 6.14, 6.15, 6.16, 6.17, 6.19, 6.26, 6.27); *Tectonophysics*, **220**, 205–221, 1993 (Figs. 2.12, 14.13); *Journal of Structural Geology*, **9**, 61–69, 1987 (Fig. 3.13); *Journal of Structural Geology*, **32**, 1643–1655, 2010 (Figs. 6.3, 14.21, 14.22, 14.24, 14.25, 14.26); *Tectonophysics*, **336**, 183–197, 2001 (Figs. 12.2, 16.2); *Tectonophysics*, **139**, 295–308, 1987 (Fig. 13.4); *Bulletin of Volcanology*, **67**, 768–782, 2005 (Fig. 13.6); *Journal of Geophysical Research*, **103**, 7401–7412, 1998 (Fig. 13.7); *Hydrogeology Journal*, **11**, 84–99, 2003 (Figs. 13.25, 14.15); *Bulletin of Volcanology*, **65**, 606–619, 2003 (Figs. 13.29, 13.30); *Journal of Structural Geology*, **22**, 1221–1231, 2000 (Fig. 14.18); *Geophysical Research Letters*, **18**, 2993–2996, 2000 (Figs. 16.4, 16.7, 16.8); *Terra Nova*, **15**, 187–193, 2003 (Fig. 16.9); *Journal of Structural Geology*, **23**, 343–353, 2001 (Figs. 17.1, 17.2).