
1
Basics

Simply stated, the problem we study in this book is: how to approximate a shape
from the coordinates of a given set of points from the shape. The set of points is
called a point sample, or simply a sample of the shape. The specific shape that
we will deal with are curves in two dimensions and surfaces in three dimensions.
The problem is motivated by the availability of modern scanning devices that
can generate a point sample from the surface of a geometric object. For example,
a range scanner can provide the depth values of the sampled points on a surface
from which the three-dimensional coordinates can be extracted. Advanced hand
held laser scanners can scan a machine or a body part to provide a dense sample
of the surfaces. A number of applications in computer-aided design, medical
imaging, geographic data processing, and drug designs, to name a few, can take
advantage of the scanning technology to produce samples and then compute a
digital model of a geometric shape with reconstruction algorithms. Figure 1.1
shows such an example for a sample on a surface which is approximated by a
triangulated surface interpolating the input points.

The reconstruction algorithms described in this book produce a piecewise
linear approximation of the sampled curves and surfaces. By approximation
we mean that the output captures the topology and geometry of the sam-
pled shape. This requires some concepts from topology which are covered in
Section 1.1.

Clearly, a curve or a surface cannot be approximated from a sample unless
it is dense enough to capture the features of the shape. The notions of features
and dense sampling are formalized in Section 1.2.

All reconstruction algorithms described in this book use the data structures
called Voronoi diagrams and their duals called Delaunay triangulations. The
key properties of these data structures are described in Section 1.3.
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2 1 Basics

(a) (b)

(c)

Figure 1.1. (a) A sample of Mannequin, (b) a reconstruction, and (c) rendered
Mannequin model.

1.1 Shapes

The term shape can circumscribe a wide variety of meaning depending on the
context. We define a shape to be a subset of an Euclidean space. Even this class
is too broad for our purpose. So, we focus on a specific type of shapes called
smooth manifolds and limit ourselves only up to three dimensions.

A global yardstick measuring similarities and differences in shapes is pro-
vided by topology. It deals with the connectivity of spaces. Various shapes are
compared with respect to their connectivities by comparing functions over them
called maps.
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1.1 Shapes 3

1.1.1 Spaces and Maps

In point set topology a topological space is defined to a be a point set T with a
system of subsets T so that the following conditions hold.

1. ∅, T ∈ T ,
2. U ⊆ T implies that the union of U is in T ,
3. U ⊆ T and U finite implies that the intersection of U is in T .

The system T is the topology on the set T and its sets are open in T. The
closed sets of T are the subsets whose complements are open in T. Consider
the k-dimensional Euclidean space R

k and let us examine a topology on it. An
open ball is the set of all points closer than a certain Euclidean distance to a
given point. Define T as the set of open sets that are a union of a set of open
balls. This system defines a topology on R

k .
A subset T

′ ⊆ T with a subspace topology T ′ defines a topological subspace
where T ′ consists of all intersections between T

′ and the open sets in the
topology T of T. Topological spaces that we will consider are subsets of R

k

which inherits their topology as a subspace topology. Let x denote a point
in R

k , that is, x = {x1, x2, . . . , xk} and ‖x‖ = (x2
1 + x2

2 + · · · + x2
k )

1
2 denote

its distance from the origin. Example of subspace topology are the k-ball B
k ,

k-sphere S
k , the halfspace H

k , and the open k-ball B
k
o where

B
k = {x ∈ R

k | ‖x‖ ≤ 1}
S

k = {x ∈ R
k+1 | ‖x‖ = 1}

H
k = {x ∈ R

k | xk ≥ 0}
B

k
o = B

k \ S
k .

It is often important to distinguish topological spaces that can be covered with
finitely many open balls. A covering of a topological space T is a collection
of open sets whose union is T. The topological space T is called compact if
every covering of T can be covered with finitely many open sets included in the
covering. An example of a compact topological space is the k-ball B

k . However,
the open k-ball is not compact. The closure of a topological space X ⊆ T is the
smallest closed set ClX containing X.

Continuous functions between topological spaces play a significant role to
define their similarities. A function g : T1 → T2 from a topological space T1

to a topological space T2 is continuous if for every open set U ⊆ T2, the set
g−1(U ) is open in T1. Continuous functions are called maps.
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4 1 Basics

Homeomorphism

Broadly speaking, two topological spaces are considered the same if one has a
correspondence to the other which keeps the connectivity same. For example,
the surface of a cube can be deformed into a sphere without any incision or
attachment during the process. They have the same topology. A precise defini-
tion for this topological equality is given by a map called homeomorphism. A
homeomorphism between two topological spaces is a map h : T1 → T2 which
is bijective and has a continuous inverse. The explicit requirement of contin-
uous inverse can be dropped if both T1 and T2 are compact. This is because
any bijective map between two compact spaces must have a continuous inverse.
This fact helps us proving homeomorphisms for spaces considered in this book
which are mostly compact.

Two topological spaces are homeomorphic if there exists a homeomorphism
between them. Homeomorphism defines an equivalence relation among topo-
logical spaces. That is why two homeomorphic topological spaces are also
called topologically equivalent. For example, the open k-ball is topologically
equivalent to R

k . Figure 1.2 shows some more topological spaces some of which
are homeomorphic.

Homotopy

There is another notion of similarity among topological spaces which is weaker
than homeomorphism. Intuitively, it relates spaces that can be continuously
deformed to one another but may not be homeomorphic. A map g : T1 → T2 is
homotopic to another map h : T1 → T2 if there is a map H : T1 × [0, 1] → T2

so that H (x, 0) = g(x) and H (x, 1) = h(x). The map H is called a homotopy
between g and h.

Two spaces T1 and T2 are homotopy equivalent if there exist maps g : T1 →
T2 and h : T2 → T1 so that h ◦ g is homotopic to the identity map ι1 : T1 → T1

and g ◦ h is homotopic to the identity map ι2 : T2 → T2. If T2 ⊂ T1, then T2 is
a deformation retract of T1 if there is a map r : T1 → T2 which is homotopic
to ι1 by a homotopy that fixes points of T2. In this case T1 and T2 are homotopy
equivalent. Notice that homotopy relates two maps while homotopy equivalence
relates two spaces. A curve and a point are not homotopy equivalent. However,
one can define maps from a 1-sphere S

1 to a curve and a point in the plane
which have a homotopy.

One difference between homeomorphism and homotopy is that homeomor-
phic spaces have same dimension while homotopy equivalent spaces need not
have same dimension. For example, the 2-ball shown in Figure 1.2(e) is homo-
topy equivalent to a single point though they are not homeomorphic. Any of
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1.1 Shapes 5

(a) (b) (c)

(f)(e)(d)

Figure 1.2. (a) 1-ball, (b) and (c) spaces homeomorphic to the 1-sphere, (d) and (e)
spaces homeomorphic to the 2-ball, and (f) an open 2-ball which is not homeomorphic
to the 2-ball in (e).

the end vertices of the segment in Figure 1.2(a) is a deformation retract of the
segment.

Isotopy

Homeomorphism and homotopy together bring a notion of similarity in spaces
which, in some sense, is stronger than each one of them individually. For ex-
ample, consider a standard torus embedded in R

3. One can knot the torus (like
a knotted rope) which still embeds in R

3. The standard torus and the knotted
one are both homeomorphic. However, there is no continuous deformation of
one to the other while maintaining the property of embedding. The reason is
that the complement spaces of the two tori are not homotopy equivalent. This
requires the notion of isotopy.

An isotopy between two spaces T1 ⊆ R
k and T2 ⊆ R

k is a map ξ : T1 ×
[0, 1] → R

k such that ξ (T1, 0) is the identity of T1, ξ (T1, 1) = T2 and for
each t ∈ [0, 1], ξ (·, t) is a homeomorphism onto its image. An ambient isotopy
between T1 and T2 is a map ξ : R

k × [0, 1] → R
k such that ξ (·, 0) is the identity

of R
k , ξ (T1, 1) = T2 and for each t ∈ [0, 1], ξ (·, t) is a homeomorphism of R

k .
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6 1 Basics

Observe that ambient isotopy also implies isotopy. It is also known that two
spaces that have an isotopy between them also have an ambient isotopy between
them. So, these two notions are equivalent. We will call T1 and T2 isotopic if
they have an isotopy between them.

When we talk about reconstructing surfaces from sample points, we would
like to claim that the reconstructed surface is not only homeomorphic to the
sampled one but is also isotopic to it.

1.1.2 Manifolds

Curves and surfaces are a particular type of topological space called manifolds.
A neighborhood of a point x ∈ T is an open set that contains x . A topological
space is a k-manifold if each of its points has a neighborhood homeomorphic
to the open k-ball which in turn is homeomorphic to R

k . We will consider only
k-manifolds that are subspaces of some Euclidean space.

The plane is a 2-manifold though not compact. Another example of a 2-
manifold is the sphere S

2 which is compact. Other compact 2-manifolds include
torus with one through-hole and double torus with two through-holes. One
can glue g tori together, called summing g tori, to form a 2-manifold with g
through-holes. The number of through-holes in a 2-manifold is called its genus.
A remarkable result in topology is that all compact 2-manifolds in R

3 must be
either a sphere or a sum of g tori for some g ≥ 1.

Boundary

Surfaces in R
3 as we know them often have boundaries. These surfaces have the

property that each point has a neighborhood homeomorphic to R
2 except the

ones on the boundary. These surfaces are 2-manifolds with boundary. In general,
a k-manifold with boundary has points with neighborhood homeomorphic to
either R

k , called the interior points, or the halfspace H
k , called the boundary

points. The boundary of a manifold M , bd M , consists of all boundary points.
By this definition a manifold as defined earlier has a boundary, namely an empty
one. The interior of M consists of all interior points and is denoted Int M .

It is a nice property of manifolds that if M is a k-manifold with boundary,
bd M is a (k − 1)-manifold unless it is empty. The k-ball B

k is an example
of a k-manifold with boundary where bd B

k = S
k−1 is the (k − 1)-sphere and

its interior Int B
k is the the open k-ball. On the other hand, bd S

k = ∅ and
Int S

k = S
k . In Figure 1.2(a), the segment is a 1-ball where the boundary is a 0-

sphere consisting of the two endpoints. In Figure 1.2(e), the 2-ball is a manifold
with boundary and its boundary is the circle, a 1-sphere.
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1.1 Shapes 7

Orientability

A 2-manifold with or without boundary can be either orientable or nonori-
entable. We will only give an intuitive explanation of this notion. If one travels
along any curve on a 2-manifold starting at a point, say p, and considers the
oriented normals at each point along the curve, then one gets the same oriented
normal at p when he returns to p. All 2-manifolds in R

3 are orientable. However,
2-manifolds in R

3 that have boundaries may not be orientable. For example, the
Möbius strip, obtained by gluing the opposite edges of a rectangle with a twist,
is nonorientable. The 2-manifolds embedded in four and higher dimensions
may not be orientable no matter whether they have boundaries or not.

1.1.3 Complexes

Because of finite storage within a computer, a shape is often approximated with
finitely many simple pieces such as vertices, edges, triangles, and tetrahedra. It
is convenient and sometimes necessary to borrow the definitions and concepts
from combinatorial topology for this representation.

An affine combination of a set of points P = {p0, p1, . . . , pn} ⊂ R
k is a

point p ∈ R
k where p = �n

i=0αi pi , �iαi = 1 and each αi is a real number. In
addition, if each αi is nonnegative, the point p is a convex combination. The
affine hull of P is the set of points that are an affine combination of P . The
convex hull Conv P is the set of points that are a convex combination of P . For
example, three noncollinear points in the plane have the entire R

2 as the affine
hull and the triangle with the three points as vertices as the convex hull.

A set of points is affinely independent if none of them is an affine combination
of the others. A k-polytope is the convex hull of a set of points which has at
least k + 1 affinely independent points. The affine hull aff µ of a polytope µ is
the affine hull of its vertices.

A k-simplex σ is the convex hull of exactly k + 1 affinely independent points
P . Thus, a vertex is a 0-simplex, an edge is a 1-simplex, a triangle is a 2-simplex,
and a tetrahedron is a 3-simplex. A simplex σ ′ = Conv T for a nonempty subset
T ⊆ P is called a face of σ . Conversely, σ is called a coface of σ ′. A face σ ′ ⊂ σ

is proper if the vertices of σ ′ are a proper subset of σ . In this case σ is a proper
coface of σ ′.

A collection K of simplices is called a simplicial complex if the following
conditions hold.

(i) σ ′ ∈ K if σ ′ is a face of any simplex σ ∈ K.
(ii) For any two simplices σ, σ ′ ∈ K, σ ∩ σ ′ is a face of both unless it is empty.
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8 1 Basics

(a) (b)

Figure 1.3. (a) A simplicial complex and (b) not a simplicial complex.

The above two conditions imply that the simplices meet nicely. The simplices
in Figure 1.3(a) form a simplicial complex whereas the ones in Figure 1.3(b)
do not.

Triangulation

A triangulation of a topological space T is a simplicial complex K whose
underlying point set is T. Figure 1.1(b) shows a triangulation of a 2-manifold
with boundary.

Cell Complex

We also use a generalized version of simplicial complexes in this book. The
definition of a cell complex is exactly same as that of the simplicial complex with
simplices replaced by polytopes. A cell complex is a collection of polytopes
and their faces where any two intersecting polytopes meet in a face which is
also in the collection. A cell complex is a k-complex if the largest dimension
of any polytope in the complex is k. We also say that two elements in a cell
complex are incident if they intersect.

1.2 Feature Size and Sampling

We will mainly concentrate on smooth curves in R
2 and smooth surfaces in

R
3 as the sampled spaces. The notation � will be used to denote this generic

sampled space throughout this book. We will defer the definition of smoothness
until Chapter 2 for curves and Chapter 3 for surfaces. It is sufficient to assume
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1.2 Feature Size and Sampling 9

(a) (b)

(c)

Figure 1.4. (a) A curve in the plane, (b) a sample of it, and (c) the reconstructed curve.

that � is a 1-manifold in R
2 and a 2-manifold in R

3 for the definitions and
results described in this chapter.

Obviously, it is not possible to extract any meaningful information about
� if it is not sufficiently sampled. This means features of � should be rep-
resented with sufficiently many sample points. Figure 1.4 shows a curve
in the plane which is reconstructed from a sufficiently dense sample. But,
this brings up the question of defining features. We aim for a measure that
can tell us how complicated � is around each point x ∈ �. A geomet-
ric structure called the medial axis turns out to be useful to define such a
measure.
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10 1 Basics

Before we define the medial axis, let us fix some notations about distances
and balls that will be used throughout the rest of this book. The Euclidean
distance between two points p = (p1, p2, . . . , pk) and x = (x1, x2, . . . , xk) in
R

k is the length ‖p − x‖ of the vector −→xp = (p − x) where

‖p − x‖ = {
(p1 − x1)2 + (p2 − x2)2 + · · · + (pk − xk)2

} 1
2 .

Also, we have

‖p − x‖ = {(p − x)T (p − x)} 1
2

= {pT p − 2pT x + xT x} 1
2

= {‖p‖2 − 2pT x + ‖x‖2} 1
2 .

For a set P ⊆ R
k and a point x ∈ R

k , let d(x, P) denote the Euclidean
distance of x from P; that is,

d(x, P) = inf
p∈P

{‖p − x‖}.

We will also consider distances called Hausdorff distances between two sets.
For X, Y ⊆ R

k this distance is given by

max{sup
x∈X

d(x, Y ), sup
y∈Y

d(y, X )}.

Roughly speaking, the Hausdorff distance tells how much one set needs to be
moved to be identical with the other set.

The set Bx,r = {y | y ∈ R
k, ‖y − x‖ ≤ r} is a ball with center x and radius

r . By definition Bx,r and its boundary are homeomorphic to B
k and S

k−1 re-
spectively.

1.2.1 Medial Axis

The medial axis of a curve or a surface � is meant to capture the middle of the
shape bounded by �. There are slightly different definitions of the medial axis
in the literature. We adopt one of them and mention the differences with the
others.

Assume that � is embedded in R
k . A ball B ⊂ R

k is empty if the interior
of B is empty of points from �. A ball B is maximal if every empty ball that
contains B equals B. The skeleton Sk� of � is the set of centers of all maximal
balls. Let Mo

� be the set of points in R
k whose distance to � is realized by at

least two points in �. The closure of Mo
� is M� , that is, M� = Cl Mo

� . The
following inclusions hold:

Mo
� ⊆ Sk� ⊆ M�.
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