Many problems in science and engineering are described by nonlinear differential equations, which can be notoriously difficult to solve. Through the interplay of topological and variational ideas, methods of nonlinear analysis are able to tackle such fundamental problems. This graduate text explains some of the key techniques in a way that will be appreciated by mathematicians, physicists and engineers. Starting from the elementary tools of bifurcation theory and analysis, the authors cover a number of more modern topics including critical point theory and elliptic partial differential equations. A series of appendices gives convenient accounts of a variety of advanced topics that will introduce the reader to areas of current research. The book is amply illustrated and many chapters are rounded off with a set of exercises.
Cambridge Studies in Advanced Mathematics

Editorial Board:
B. Bollobas, W. Fulton, A. Katok, F. Kirwan, P. Sarnak, B. Simon, B. Totaro

All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing visit:
http://www.cambridge.org/mathematics/

Already published
72 F. Borceaux & G. Janelidze Galois theories
73 B. Bollobás Random graphs
74 R. M. Dudley Real analysis and probability
75 T. Sheil-Small Complex polynomials
76 C Voisin Hodge theory and complex algebraic geometry, I
77 C Voisin Hodge theory and complex algebraic geometry, II
78 V. Paulsen Completely bounded maps and operator algebras
79 F. Gesztesy & H. Holden Soliton Equations and Their Algebro-Geometric Solutions, I
81 S. Mukai An Introduction to Invariants and Moduli
82 G. Tourlakis Lectures in Logic and Set Theory, I
83 G. Tourlakis Lectures in Logic and Set Theory, II
84 R. A. Bailey Association Schemes
85 J. Carlson, S. Müller-Stach & C. Peters Period Mapping and Period Domains
86 J. J. Duistermaat & J. A. C. Kolk Multidimensional Real Analysis I
87 J. J. Duistermaat & J. A. C. Kolk Multidimensional Real Analysis II
89 M. Golumbic & A. Trenk Tolerance Graphs
90 L. Harper Global Methods for Combinatorial Isoperimetric Problems
91 I. Moerdijk & J. Mrčum Introduction to Foliations and Lie Groupoids
92 J. Kollar, K. E. Smith & A. Corti Rational and Nearly Rational Varieties
93 D. Applebaum Levy Processes and Stochastic Calculus
94 B. Conrad Modular Forms and the Ramanujan Conjecture
95 M. Schechter An Introduction to Nonlinear Analysis
96 R. Carter Lie Algebras of Finite and Affine Type
97 H. L. Montgomery, R. C. Vaughan & M. Schechter Multiplicative Number Theory I
98 I. Chavel Riemannian Geometry
99 D. Goldfeld Automorphic Forms and L-Functions for the Group GL(n,R)
100 M. Marcus & J. Rosen Markov Processes, Gaussian Processes, and Local Times
101 P. Gille & T. Szamuely Central Simple Algebras and Galois Cohomology
102 J. Bertoin Random Fragmentation and Coagulation Processes
NONLINEAR ANALYSIS
AND SEMILINEAR ELLIPTIC
PROBLEMS

ANTONIO AMBROSETTI
ANDREA MALCHIODI
CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo
Cambridge University Press
The Edinburgh Building, Cambridge CB2 2RU, UK
Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521863209

© Cambridge University Press 2007

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2007

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN-10 0-521-86320-1 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.
Contents

Preface ix

1 Preliminaries
1.1 Differential calculus 1
1.2 Function spaces 4
1.3 Nemitski operators 5
1.4 Elliptic equations 7

Part I Topological methods
2 A primer on bifurcation theory 15
2.1 Bifurcation: definition and necessary conditions 15
2.2 The Lyapunov–Schmidt reduction 18
2.3 Bifurcation from the simple eigenvalue 19

3 Topological degree, I 26
3.1 Brouwer degree and its properties 26
3.2 Application: the Brouwer fixed point theorem 30
3.3 An analytic definition of the degree 31
3.4 The Leray–Schauder degree 38
3.5 The Schauder fixed point theorem 43
3.6 Some applications of the Leray–Schauder degree to elliptic equations 44
3.7 The Krasnoselski bifurcation theorem 52
3.8 Exercises 54

4 Topological degree, II: global properties 55
4.1 Improving the homotopy invariance 55
4.2 An application to a boundary value problem with sub- and super-solutions 57
Contents

4.3 The Rabinowitz global bifurcation theorem 60
4.4 Bifurcation from infinity and positive solutions of asymptotically linear elliptic problems 65
4.5 Exercises 73

Part II Variational methods, I 75

5 Critical points: extrema 77
5.1 Functionals and critical points 77
5.2 Gradients 78
5.3 Existence of extrema 80
5.4 Some applications 82
5.5 Linear eigenvalues 86
5.6 Exercises 88

6 Constrained critical points 89
6.1 Differentiable manifolds, an outline 89
6.2 Constrained critical points 93
6.3 Manifolds of codimension one 95
6.4 Natural constraints 97

7 Deformations and the Palais–Smale condition 100
7.1 Deformations of sublevels 100
7.2 The steepest descent flow 101
7.3 Deformations and compactness 105
7.4 The Palais–Smale condition 107
7.5 Existence of constrained minima 109
7.6 An application to a superlinear Dirichlet problem 109
7.7 Exercises 114

8 Saddle points and min-max methods 116
8.1 The mountain pass theorem 117
8.2 Applications 123
8.3 Linking theorems 129
8.4 The Pohozaev identity 135
8.5 Exercises 138

Part III Variational methods, II 141

9 Lusternik–Schnirelman theory 143
9.1 The Lusternik–Schnirelman category 143
9.2 Lusternik–Schnirelman theorems 147
9.3 Exercises 155

10 Critical points of even functionals on symmetric manifolds 157
10.1 The Krasnoselski genus 157
10.2 Existence of critical points 160
10.3 Multiple critical points of even unbounded functionals 164
10.4 Applications to Dirichlet boundary value problems 170
10.5 Exercises 176

11 Further results on elliptic Dirichlet problems 177
11.1 Radial solutions of semilinear elliptic equation on \mathbb{R}^n 177
11.2 Boundary value problems with critical exponent 180
11.3 Discontinuous nonlinearities 188
11.4 Problems with concave-convex nonlinearities 198
11.5 Exercises 203

12 Morse theory 204
12.1 A short review of basic facts in algebraic topology 204
12.2 The Morse inequalities 212
12.3 An application: bifurcation for variational operators 224
12.4 Morse index of mountain pass critical points 229
12.5 Exercises 235

PART IV Appendices 233
Appendix 1 Qualitative results 241
Appendix 2 The concentration compactness principle 252
Appendix 3 Bifurcation for problems on \mathbb{R}^n 262
Appendix 4 Vortex rings in an ideal fluid 274
Appendix 5 Perturbation methods 286
Appendix 6 Some problems arising in differential geometry 302

References 309
Index 315
Preface

The main purpose of nonlinear functional analysis is to develop abstract topological and variational methods to study nonlinear phenomena arising in applications. Although this is a rather recent field, initiated about one hundred years ago, remarkable advances have been made and there are now many results that are well established. The fundamental tools of the Leray–Schauder topological degree, local and global bifurcation and critical point theory, can be considered topics that any graduate student in mathematics and physics should know.

This book discusses a selection of the most basic results dealing with the aforementioned topics. The material is presented as simply as possible, in order to highlight the main ideas. In many cases we prefer to state results under slightly stronger assumptions, when this makes the exposition much more clear and avoids some unnecessary technicalities.

The abstract tools are discussed taking into account their applications to semilinear elliptic problems. In some sense, elliptic equations become like a guiding thread, along which the reader will recognize how one method is more suitable than another one, according to the specific feature of the nonlinearity. This is the reason why we discuss both topological methods and variational tools.

After a first chapter containing preliminary material, the book is divided into four parts. The first part is devoted to topological methods and bifurcation theory. Chapter 2 deals with the Lyapunov–Schmidt reduction method and the bifurcation from a simple eigenvalue and connects with the previous book *A Primer of Nonlinear Analysis* [20], of which the present book is a follow up. Chapter 3 deals with the topological degree. First, we define the degree in finite dimension using an analytical approach, which allows us to avoid several technical and cumbersome tools. Next, the Leray–Schauder degree is discussed together with some applications to elliptic boundary value problems.
Among the applications, we also prove the celebrated theorem by Krasnoselski dealing with the bifurcation from an odd eigenvalue for operators of the type identity-compact. In Chapter 4 global properties of the degree are discussed. In particular, the global bifurcation result due to Rabinowitz is proved. Special attention is also given to the existence of positive solutions of asymptotically linear boundary value problems.

Parts II and III are devoted to variational methods, namely to critical point theory. After some introductory material presented in Chapters 5 and 6, we discuss in Chapter 7 the main deformation lemmas and the Palais–Smale condition. Chapter 8 deals with the mountain pass and linking theorems. The Lusternik–Schnirelman theory and, in particular, the cases of even functionals on symmetric manifolds are discussed in Chapters 9 and 10, respectively.

Further results on elliptic boundary value problems are presented in Chapter 11, including the pioneering Brezis–Nirenberg result dealing with semilinear equations with critical nonlinearities.

An account of Morse theory is given in Chapter 12 which also contains applications to bifurcation for potential operators and to evaluation of the Morse index of a mountain pass critical point.

Part IV collects a number of appendices which deal with interesting problems that have been left out in the preceding parts because they are more specific in nature, or more complicated, or else because they are objects of current research and therefore are still in evolution. Here our main purpose is to bring the interested reader to the core of contemporary research. In many cases, we are somewhat sketchy, referring to original papers for more details.

Appendix 1 deals with the celebrated Gidas–Ni–Nirenberg symmetry result and with other qualitative results, such as the Liouville type theorem of Gidas and Spruck. Appendix 2 is concerned with the concentration-compactness method introduced by P. L. Lions and includes applications to problems with lack of compactness. Appendix 3 is related to bifurcation theory and deals with bifurcation problems in the absence of compactness, including bifurcation from the essential spectrum. Appendix 4, deals with the classical problem of vortex rings in an ideal fluid. In Appendix 5 we discuss some abstract perturbation methods in critical point theory with their applications to elliptic problems on \mathbb{R}^n, to nonlinear Schrödinger equations and to singular perturbation problems. Finally, in Appendix 6 we discuss some problems arising in differential geometry, from the classical Yamabe problem to more recent problems, dealing with fourth order invariants such as the Paneitz curvature.

The book is based on many sources. The first is the material taught in several courses given in past years at SISSA. Some of this material is based on previous
lectures delivered by by Giovanni Prodi at the Scuola Normale of Pisa in the 1970s. Very special thanks are due to this great mathematician and friend.

The second source is the papers that we have written on nonlinear analysis. Most of them are works in collaboration with other people: we would like to thank all of them warmly (see the authors of joint papers with A. A. or A. M. listed in the references).

Another input has been discussions with many other friends, including V. Coti Zelati, I. Ekeland, M. Girardi, M. Matzeu and C. Stuart.

A. A. & A. M.