What is the instantaneous position of a moving object from the point of view of the observer? How does a tennis player know when and where to place the racket in order to return a 120 mph serve? Does time stop sometimes and go faster at others? Space, time, and motion have played a fundamental role in extending the foundations of nineteenth- and twentieth-century physics. Key breakthroughs resulted from scientists who focused not just on measurements based on rulers and clocks, but also on the role of the observer. Research targeted on the observer’s capabilities and limitations raises a promising new approach that is likely to forward our understanding of neuroscience and psychophysics. *Space and Time in Perception and Action* brings together theory and empirical findings from world-class experts and is written for advanced students and neuroscientists with a particular interest in the psychophysics of space, time, and motion.

Romi Nijhawan is a Reader in Psychology at the University of Sussex, UK. In 1994, he introduced the phenomenon and the term “flash-lag effect.” He continues to study its implications for the interaction of the animal with the environment.

Beena Khurana is Senior Lecturer in Psychology at the University of Sussex, UK. She is committed to the effective communication of science and has been honored with a Lilly Teaching Fellowship at Cornell University and an Associated Students of CalTech Teaching Award at the California Institute of Technology.
SPACE AND TIME
IN PERCEPTION
AND ACTION

Edited by

ROMI NIJHAWAN
University of Sussex, UK

BEENA KHURANA
University of Sussex, UK
Contents

List of contributors viii
Acknowledgments xiii

1 Space and time: the fabric of thought and reality 1
 Beena Khurana and Romi Nijhawan

Part I Time–space during action: perisaccadic mislocalization and reaching

2 The internal eye position signal, psychophysics, and neurobiology 9
 John Schlag and Madeleine Schlag-Rey

3 Factors influencing perisaccadic visual mislocalization 19
 Hitoshi Honda

4 Visual and nonvisual factors in perisaccadic compression of space 38
 Markus Lappe, Lars Michels, and Holger Awater

5 Keeping vision stable: rapid updating of spatiotopic receptive fields may cause relativistic-like effects 52
 M. Concetta Morrone, John Ross, and David C. Burr

6 Combined influences of extraretinal signals, retinal signals, and visual induction on space perception and manual behavior in perisaccadic and steady viewing 63
 Leonard Matin and Wenxun Li

7 Space constancy: the rise and fall of perceptual compensation 94
 Bruce Bridgeman

8 Intercepting moving objects: do eye movements matter? 109
 Eli Brenner and Jeroen B. J. Smeets

9 The utility of visual motion for goal-directed reaching 121
 David Whitney, Ikuya Murakami, and Hiroaki Gomi

Part II Temporal phenomena: perception

10 Saccadic chronostasis and the continuity of subjective temporal experience across eye movements 149
 Kielan Yarrow, Patrick Haggard, and John C. Rothwell
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Experiencing the future: the influence of self-initiation on temporal perception</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>Timothy Verstynen, Michael Oliver, and Richard B. Ivry</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>On the perceived interdependence of space and time: evidence for spatial priming in the temporal kappa effect</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>Gisa Aschersleben and Jochen Müßeler</td>
<td></td>
</tr>
<tr>
<td>Part III</td>
<td>Temporal phenomena: binding and asynchrony</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Dynamics of visual feature binding</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>Colin W. G. Clifford</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>How does the timing of neural signals map onto the timing of perception?</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>David M. Eagleman</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Mechanisms of simultaneity constancy</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>Laurence Harris, Vanessa Harrar, Philip Jaekl, and Agnieszka Kopinska</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Relative timing and perceptual asynchrony</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>Derek H. Arnold</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>The time marker account of cross-channel temporal judgments</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>Shin’ya Nishida and Alan Johnston</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Simultaneity versus asynchrony of visual motion and luminance changes</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>Martin J. M. Lankheet and Wim A. van de Grind</td>
<td></td>
</tr>
<tr>
<td>Part IV</td>
<td>Spatial phenomena: forward shift effects</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>The Fröhlich effect: past and present</td>
<td>321</td>
</tr>
<tr>
<td></td>
<td>Dirk Kerzel</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Approaches to representational momentum: theories and models</td>
<td>338</td>
</tr>
<tr>
<td></td>
<td>Timothy L. Hubbard</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Conceptual influence on the flash-lag effect and representational momentum</td>
<td>366</td>
</tr>
<tr>
<td></td>
<td>Masayoshi Nagai, Mutsumi Suganuma, Romi Nijhawan, Jennifer J. Freyd, Geoffrey Miller, and Katsumi Watanabe</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Perceptual asynchronies and the dual-channel differential latency hypothesis</td>
<td>379</td>
</tr>
<tr>
<td></td>
<td>Hulusi Kafaligönlü, Saumil S. Patel, Haluk Öğmen, Harold E. Bedell, and Gopathy Purushothaman</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Paying attention to the flash-lag effect</td>
<td>396</td>
</tr>
<tr>
<td></td>
<td>Marcus V. C. Baldo and Stanley A. Klein</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Illusions of time, space, and motion: flash-lag meets chopsticks and reversed phi</td>
<td>408</td>
</tr>
<tr>
<td></td>
<td>Stuart Anstis</td>
<td></td>
</tr>
</tbody>
</table>
Contents

25 Bridging the gap: a model of common neural mechanisms underlying the Fröhlich effect, the flash-lag effect, and the representational momentum effect
Dirk Jancke and Wolfram Erlhagen 422

26 Perceiving-the-present and a unifying theory of illusions
Mark A. Changizi, Andrew Hsieh, Romi Nijhawan, Ryota Kanai, and Shinsuke Shimojo 441

27 History and theory of flash-lag: past, present, and future
Gerrit W. Maus, Beena Khurana, and Romi Nijhawan 477

Part V Space–time and awareness

28 Object updating: a force for perceptual continuity and scene stability in human vision
James T. Enns, Alejandro Lleras, and Cathleen M. Moore 503

29 A motion illusion reveals the temporally discrete nature of visual awareness
Rufin VanRullen, Leila Reddy, and Christof Koch 521

30 Priming and retouch in flash-lag and other phenomena of the streaming perceptual input
Talis Bachmann 536

Index 559
List of contributors

Stuart Anstis
Department of Psychology, University of California – San Diego, La Jolla, California, USA

Derek H. Arnold
School of Psychology, The University of Queensland, St. Lucia, Australia

Gisa Aschersleben
Department of Psychology, Saarland University, Saarbrücken, Germany

Holger Awater
Bochum, Germany

Talis Bachmann
Institute of Law, University of Tartu, Tallinn, Estonia

Marcus V. C. Baldo
Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil

Harold E. Bedell
College of Optometry and Center for NeuroEngineering and Cognitive Science, University of Houston, Houston, Texas, USA

Eli Brenner
Faculty of Human Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands

Bruce Bridgeman
Department of Psychology, University of California – Santa Cruz, Santa Cruz, California, USA

David C. Burr
Istituto di Neuroscienze del CNR, Pisa, Italy

Mark A. Changizi
Department of Cognitive Science, Rensselaer Polytechnic Institute, Troy, New York, USA
List of contributors

Colin W. G. Clifford
School of Psychology, The University of Sydney, Sydney, Australia

David M. Eagleman
Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA

James T. Enns
Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada

Wolfram Erlhagen
Departamento de Matemática para C&T, Universidade do Minho, Guimarães, Portugal

Jennifer J. Freyd
Department of Psychology, University of Oregon, Eugene, Oregon, USA

Hiroaki Gomi
NTT Communication Science Labs, Nippon Telegraph and Telecommunication Co., Atsugi, Japan

Patrick Haggard
Institute of Cognitive Neuroscience, University College London, London, UK

Vanessa Harrar
Department of Psychology, York University, Toronto, Ontario, Canada

Laurence Harris
Department of Psychology, York University, Toronto, Ontario, Canada

Hitoshi Honda
Department of Psychology and Center for Transdisciplinary Research, Niigata University, Niigata, Japan

Andrew Hsieh
Pasadena, California, USA

Timothy L. Hubbard
Department of Psychology, Texas Christian University, Fort Worth, Texas, USA

Richard B. Ivry
Department of Psychology, Helen Wills Neuroscience Institute, University of California – Berkeley, Berkeley, California, USA

Philip Jaekl
Universitat Pompeu Fabra, Departament de Tecnologies de la Informació i les Comunicacions, Barcelona, Spain

Dirk Jancke
Institut für Neuroinformatik, Ruhr-University Bochum, Bochum, Germany
List of contributors

Alan Johnston
Department of Psychology, University College London, London, UK

Hulusi Kafaligönül
Vision Center Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA

Ryota Kanai
Institute of Cognitive Neuroscience, Department of Psychology, University College London, London, UK

Dirk Kerzel
Faculté de Psychologie et des Sciences de l’Éducation, Université de Genève, Genève, Switzerland

Beena Khurana
School of Psychology, University of Sussex, Falmer, UK

Stanley A. Klein
School of Optometry, University of California – Berkeley, Berkeley, California, USA

Christof Koch
California Institute of Technology, Pasadena, California, USA

Agnieszka Kopinska
Department of Psychology, York University, Toronto, Ontario, Canada

Martin J. M. Lankheet
Experimental Zoology Group, Wageningen University, Wageningen, The Netherlands

Markus Lappe
Psychologisches Institut II, Westf. Wilhelms-Universität, Münster, Germany

Wenxun Li
Department of Psychology, Clarence H. Graham Memorial Laboratory of Visual Science, Columbia University, New York, New York, USA

Alejandro Lleras
Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA

Leonard Matin
Department of Psychology, Clarence H. Graham Memorial Laboratory of Visual Science, Columbia University, New York, New York, USA

Gerrit W. Maus
Center for Mind and Brain, University of California – Davis, Davis, California, USA

Lars Michels
UniversitätätsSpital Zürich, Zürich, Switzerland
List of contributors

Geoffrey Miller
Department of Psychology, University of New Mexico, Albuquerque, New Mexico, USA

Cathleen M. Moore
Department of Psychology, University of Iowa, Iowa City, Iowa, USA

M. Concetta Morrone
Istituto di Neuroscienze del CNR, Pisa, Italy

Ikuya Murakami
Department of Life Sciences, University of Tokyo, Tokyo, Japan

Jochen Müsseler
Psychology Department, RWTH Aachen University, Aachen, Germany

Masayoshi Nagai
Institute for Human Science and Biomedical Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan

Romi Nijhawan
School of Psychology, University of Sussex, Falmer, UK

Shin’ya Nishida
Human and Information Science Laboratory, NTT Communication Science Laboratories, Atsugi, Japan

Haluk Öğmen
Department of Electrical and Computer Engineering, Center for NeuroEngineering and Cognitive Science, University of Houston, Houston, Texas, USA

Michael Oliver
Vision Science Program, School of Optometry, University of California – Berkeley, Berkeley, California, USA

Saumil S. Patel
Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, Texas, USA

Gopathy Purushothaman
Department of Cell and Developmental Biology, Vanderbilt Medical Center, Vanderbilt University, Nashville, Tennessee, USA

Leila Reddy
Centre de Recherche Cerveau et Cognition, Faculte de Medecine Rangueil, Toulouse, France

John Ross
School of Psychology, University of Western Australia, Nedlands, Australia
List of contributors

John C. Rothwell
Sobell Department, UCL Institute of Neurology, London, UK

John Schlag
Department of Neurobiology, School of Medicine, University of California – Los Angeles, Los Angeles, California, USA

Madeleine Schlag-Rey
Department of Neurobiology, School of Medicine, University of California – Los Angeles, Los Angeles, California, USA

Shinsuke Shimojo
Computation and Neural Systems, California Institute of Technology, Pasadena, California, USA

Jeroen B. J. Smeets
Faculty of Human Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands

Mutsumi Suganuma
Global Information and Telecommunication Institute, Waseda University, Tokyo, Japan

Wim A. van de Grind
Helmholtz Institute, Utrecht University, Utrecht, The Netherlands

Rufin VanRullen
Centre de Recherche Cerveau et Cognition, Faculte de Medecine Rangueil, Toulouse, France

Timothy Verstynen
Keck Center for Integrative Neuroscience, Department of Physiology, University of California – San Francisco, San Francisco, California, USA

Katsumi Watanabe
Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan

David Whitney
Center for Mind and Brain and Department of Psychology, University of California – Davis, Davis, California, USA

Kielan Yarrow
City University, London, UK
Acknowledgments

We thank Rohan Singh Nijhawan for his help with the editing and checking of figures.

This book is based in part on the proceedings of two conferences: Visual Localization in Space–Time held at the University of Sussex, UK (August 2002) and Problems of Space and Time in Perception and Action held at the California Institute of Technology, USA (June 2005). We thank Alisdair Smith (past Vice Chancellor of the University of Sussex); Professor Graham Davey (past Chair, Psychology); the School of Cognitive and Computing Sciences (COGS); EPSRC (EPSRC: GR/S02730/01) for supporting the Sussex conference; and the Association for the Scientific Study of Consciousness (ASSC) for supporting the Caltech conference. Last, we thank the contributors who have made this endeavor worthwhile.